cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178525 The sum of the costs of all nodes in the Fibonacci tree of order n.

This page as a plain text file.
%I A178525 #18 Jan 05 2025 19:51:39
%S A178525 0,0,3,8,22,49,104,208,403,760,1406,2561,4608,8208,14499,25432,44342,
%T A178525 76913,132808,228416,391475,668840,1139518,1936513,3283392,5555424,
%U A178525 9381699,15815528,26618518,44733745,75073256,125827696,210642643
%N A178525 The sum of the costs of all nodes in the Fibonacci tree of order n.
%C A178525 A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a node in a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this node.
%C A178525 A178525 is the 1-sequence of reduction of the odd number sequence (2n-1) by x^2 -> x+1; as such it is related to 0-sequence of this reduction, A192304. See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". - _Clark Kimberling_, Jun 27 2011
%D A178525 D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
%H A178525 G. C. Greubel, <a href="/A178525/b178525.txt">Table of n, a(n) for n = 0..1000</a>
%H A178525 Y. Horibe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-2/horibe.pdf">An entropy view of Fibonacci trees</a>, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
%H A178525 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-3,1,1).
%F A178525 a(n) = 3 + (2*n-3)*F(n-1) + (2*n-5)*F(n), where F(k)=A000045(k) are the Fibonacci numbers.
%F A178525 a(n) = a(n-1) + a(n-2) + 2*F(n+1) + 2*F(n-1) - 3 (n>=2), F(0)=0, F(1)=0.
%F A178525 G.f.: z^2*(3-z+z^2)/((1-z)*(1-z-z^2)^2).
%p A178525 with(combinat): seq(3+(2*n-3)*fibonacci(n-1)+(2*n-5)*fibonacci(n), n = 0 .. 32);
%t A178525 Table[3 +(2*n-3)*Fibonacci[n-1] +(2*n-5)*Fibonacci[n], {n,0,40}] (* _G. C. Greubel_, Jan 30 2019 *)
%o A178525 (PARI) a(n) = 3+(2*n-3)*fibonacci(n-1) + (2*n-5)*fibonacci(n); \\ _Michel Marcus_, Jan 21 2019
%o A178525 (Magma) [3 +(2*n-3)*Fibonacci(n-1) +(2*n-5)*Fibonacci(n): n in [0..40]]; // _G. C. Greubel_, Jan 30 2019
%o A178525 (Sage) [3 +(2*n-3)*fibonacci(n-1) +(2*n-5)*fibonacci(n) for n in range(40)] # _G. C. Greubel_, Jan 30 2019
%o A178525 (GAP) List([0..40], n -> 3 +(2*n-3)*Fibonacci(n-1) +(2*n-5)*Fibonacci(n)); # _G. C. Greubel_, Jan 30 2019
%Y A178525 Cf. A000045, A094584, A178521.
%K A178525 nonn
%O A178525 0,3
%A A178525 _Emeric Deutsch_, Jun 15 2010