cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178535 Matrix inverse of A178534.

This page as a plain text file.
%I A178535 #10 Feb 23 2024 04:25:25
%S A178535 1,-2,1,-1,-1,1,0,-1,-1,1,-1,-1,0,-1,1,1,0,-2,0,-1,1,-1,-1,0,-1,0,-1,
%T A178535 1,0,0,0,-1,-1,0,-1,1,0,0,-1,-1,0,-1,0,-1,1,1,0,-1,1,-2,0,-1,0,-1,1,
%U A178535 -1,-1,0,-1,0,-1,0,-1,0,-1,1,0,1,1,-1,0,-1,-1,0,-1,0,-1,1,-1,-1,0,-1,0,-1,0,-1,0,-1,0,-1,1
%N A178535 Matrix inverse of A178534.
%C A178535 Except for first term row sums equal a signed version of A023022.
%e A178535 Table begins:
%e A178535    1
%e A178535   -2  1
%e A178535   -1 -1  1
%e A178535    0 -1 -1  1
%e A178535   -1 -1  0 -1  1
%e A178535    1  0 -2  0 -1  1
%e A178535   -1 -1  0 -1  0 -1  1
%e A178535    0  0  0 -1 -1  0 -1  1
%e A178535    0  0 -1 -1  0 -1  0 -1  1
%e A178535    1  0 -1  1 -2  0 -1  0 -1  1
%e A178535   -1 -1  0 -1  0 -1  0 -1  0 -1  1
%p A178535 A178535 := proc(n, l)
%p A178535     option remember;
%p A178535     a := 0 ;
%p A178535     if n = l then
%p A178535         a := 1 ;
%p A178535     end if;
%p A178535     for k from l to n-1 do
%p A178535         a := a-A178534(n, k)*procname(k, l) ;
%p A178535     end do:
%p A178535     a/A178534(n, n) ;
%p A178535 end proc:
%p A178535 seq(seq(A178535(n,k),k=1..n),n=1..12) ; # _R. J. Mathar_, Oct 28 2010
%t A178535 nmax = 13;
%t A178535 (* T is A178534 *)
%t A178535 T[n_, 1] := Fibonacci[n+1];
%t A178535 T[n_, k_] := T[n, k] = If[k > n, 0, Sum[T[n-i, k-1], {i, 1, k-1}] - Sum[T[n-i, k], {i, 1, k-1}]];
%t A178535 A178535 = Inverse[Array[T, {nmax, nmax}]];
%t A178535 Table[A178535[[n, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 23 2024 *)
%Y A178535 Cf. First column is A178536.
%K A178535 sign,tabl
%O A178535 1,2
%A A178535 _Mats Granvik_, May 29 2010