cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178568 Triangle read by rows, antidiagonals of an array (row r >= 1, column n >= 1) generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1).

This page as a plain text file.
%I A178568 #22 Oct 22 2021 23:47:17
%S A178568 1,1,1,1,2,2,1,3,3,1,1,4,4,4,3,1,5,5,9,5,2,1,6,6,16,7,6,3,1,7,7,25,9,
%T A178568 12,7,1,1,8,8,36,11,20,13,8,4,1,9,9,49,13,30,21,27,9,3,1,10,10,64,15,
%U A178568 42,31,64,16,10,5,1,11,11,81,17,56,43,125,25,21,11,2
%N A178568 Triangle read by rows, antidiagonals of an array (row r >= 1, column n >= 1) generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1).
%C A178568 Companion to A178239 (the latter generated from a(n) = a(2n), a(2n+1) = r*a(n) + a(n+1)).
%C A178568 Row sums of the triangle = A169826: (1, 2, 5, 8, 16, 27, 45, 69, 109, ...).
%C A178568 Polcoeff row r of the array as f(x) satisfies f(x)/f(x^2) = (1 + r*x + x^2).
%C A178568 Let q(x) = (1 + r*x + x^2). Then polcoeff row r = q(x)*q(x^2)*q(x^4)*q(x^8)*...
%C A178568 Right border of the triangle = A002487: (1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, ...).
%C A178568 Terms in r-th row mod r (for r > 1): (1, 0, 1, 0, 1, 0, ...).
%F A178568 a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1).
%F A178568 Given (1, r, 1, 0, 0, 0, ...) in each column of an infinite lower triangular matrix M; shifted down twice from the previous column. r-th row of the array = lim_{n->inf} M^n.
%F A178568 For the r-th row, a(2^k+n) = r*a(n) + a(2^k-n). - _Andrey Zabolotskiy_, Oct 21 2021
%e A178568 First few rows of the array:
%e A178568   1,   1,   2,   1,   3,   2,   3,   1,   4,   3,   5,   2,   5,   3, ..
%e A178568   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14, ..
%e A178568   1,   3,   4,   9,   7,  12,  13,  27,  16,  21,  19,  36,  25,  39, ..
%e A178568   1,   4,   5,  16,   9,  20,  21,  64,  25,  36,  29,  80,  41,  84, ..
%e A178568   1,   5,   6,  25,  11,  30,  31, 125,  36,  55,  41, 150,  61, 155, ..
%e A178568   1,   6,   7,  36,  13,  42,  43, 216,  49,  78,  55, 252,  85, 258, ..
%e A178568   1,   7,   8,  49,  15,  56,  57, 343,  64, 105,  71, 392, 113, 399, ..
%e A178568   1,   8,   9,  64,  17,  72,  73, 512,  81, 136,  89, 576, 145, 584, ..
%e A178568   ...
%e A178568 First few rows of the triangle:
%e A178568   1;
%e A178568   1,  1;
%e A178568   1,  2,  2;
%e A178568   1,  3,  3,   1;
%e A178568   1,  4,  4,   4,  3;
%e A178568   1,  5,  5,   9,  5,   2;
%e A178568   1,  6,  6,  16,  7,   6,  3;
%e A178568   1,  7,  7,  25,  9,  12,  7,   1;
%e A178568   1,  8,  8,  36, 11,  20, 13,   8,  4;
%e A178568   1,  9,  9,  49, 13,  30, 21,  27,  9,  3;
%e A178568   1, 10, 10,  64, 15,  42, 31,  64, 16, 10,  5;
%e A178568   1, 11, 11,  81, 17,  56, 43, 125, 25, 21, 11,  2;
%e A178568   1, 12, 12, 100, 19,  72, 57, 216, 36, 36, 19, 12,  5;
%e A178568   1, 13, 13, 121, 21,  90, 73, 343, 49, 55, 29, 36, 13,  3;
%e A178568   1, 14, 14, 144, 23, 110, 91, 512, 64, 78, 41, 80, 25, 14, 4;
%e A178568   ...
%o A178568 (PARI) A(r,n) = my(x=0,y=1); forstep(i=if(n,logint(n,2)),0,-1, if(bittest(n,i), x+=y;y*=r, y+=x;x*=r)); x;
%o A178568 T(r,n) = A(r-n+1,n); \\ _Kevin Ryde_, Mar 18 2021
%Y A178568 Array rows r=1 to r=10: A002487, A000027, A178590, A244643, A342610, A237711, A342611, A342614, A342615, A178569.
%Y A178568 Cf. A178239.
%K A178568 nonn,tabl
%O A178568 1,5
%A A178568 _Gary W. Adamson_, May 29 2010