cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178578 Diagonal sums of second binomial transform of the Narayana triangle A001263.

This page as a plain text file.
%I A178578 #37 Feb 09 2025 06:34:54
%S A178578 1,3,10,34,118,417,1497,5448,20063,74649,280252,1060439,4040413,
%T A178578 15488981,59701236,231236830,899559100,3513314664,13770811198,
%U A178578 54152480421,213585706927,844723104691,3349274471386,13310603555085,53012829376985,211560158583657,845856494229348,3387782725245302,13590698721293800,54604853170818121,219706932640295523
%N A178578 Diagonal sums of second binomial transform of the Narayana triangle A001263.
%C A178578 Hankel transform is the (1,-1) Somos-4 sequence A178079.
%H A178578 G. C. Greubel, <a href="/A178578/b178578.txt">Table of n, a(n) for n = 0..1000</a>
%F A178578 a(n) = A025254(n+2).
%F A178578 a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(n-k,j)*C(j,k)*C(j+1,k)*2^(n-k-j)/(k+1).
%F A178578 From _Vaclav Kotesovec_, Mar 02 2014: (Start)
%F A178578 Recurrence: (n+3)*a(n) = 3*(2*n+3)*a(n-1) - 7*n*a(n-2) - (2*n-3)*a(n-3) - (n-3)*a(n-4).
%F A178578 G.f.: (1 - 3*x - x^2 - sqrt(x^4 + 2*x^3 + 7*x^2 - 6*x + 1))/(2*x^3).
%F A178578 a(n) ~ (130-216*r-64*r^2-29*r^3) * sqrt(2*r^3+14*r^2-18*r+4) / (4 * sqrt(Pi) * n^(3/2) * r^n), where r = 1/6*(-3 + sqrt(3*(-11 + (1009 - 24*sqrt(183))^(1/3) + (1009 + 24*sqrt(183))^(1/3))) - sqrt(-66 - 3*(1009 - 24*sqrt(183))^(1/3) - 3*(1009 + 24*sqrt(183))^(1/3) + 216*sqrt(3/(-11 + (1009 - 24*sqrt(183))^(1/3) + (1009 + 24*sqrt(183))^(1/3))))) = 0.23742047190096998... is the root of the equation r^4 + 2*r^3 + 7*r^2 - 6*r + 1 = 0.
%F A178578 (End)
%t A178578 Table[Sum[Sum[Binomial[n-k,j]*Binomial[j,k]*Binomial[j+1,k]*2^(n-k-j)/(k+1),{j,0,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Mar 02 2014 *)
%t A178578 CoefficientList[Series[(1-3*x-x^2 -Sqrt[x^4+2*x^3+7*x^2-6*x+1])/(2*x^3), {x, 0, 50}], x] (* _G. C. Greubel_, Aug 14 2018 *)
%o A178578 (PARI) a(n)=sum(k=0,floor(n/2), sum(j=0,n-k,binomial(n-k,j)*binomial(j,k)*binomial(j+1,k)*2^(n-k-j)/(k+1)));
%o A178578 vector(22,n,a(n-1))
%o A178578 (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 -3*x-x^2 - Sqrt(x^4+2*x^3+7*x^2-6*x+1))/(2*x^3))); // _G. C. Greubel_, Aug 14 2018
%Y A178578 Cf. A025254.
%K A178578 nonn
%O A178578 0,2
%A A178578 _Paul Barry_, Dec 26 2010