cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178613 The smaller member prime(i) of an emirp pair (prime(i),prime(j)), such that the digit sum of i equals the digit sum of j.

This page as a plain text file.
%I A178613 #9 Jun 26 2015 18:53:59
%S A178613 37,359,769,1409,7687,10711,10853,11243,11593,13441,13751,14423,14551,
%T A178613 14879,15307,15661,16879,17959,30853,31193,33863,34589,37307,37489,
%U A178613 38449,73369,74959,75239,78259,78839,79669,90089,92779,100267,101531
%N A178613 The smaller member prime(i) of an emirp pair (prime(i),prime(j)), such that the digit sum of i equals the digit sum of j.
%C A178613 We consider base-10 emirp pairs (13,31) = (prime(6),prime(11)), (17,71) = (prime(7),prime(20)), (37,73) = (prime(12),prime(21)), ... (see A006567) and the digit sums of their prime indices (6,2=1+1), (7,2=2+0), (3=1+2,3=2=1),.. (see A156793).
%C A178613 If the digits sums of the two indices are the same, the smaller representative of the emirp pair is entered into the sequence.
%D A178613 W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, 13th edition, Dover Publications, 2010
%D A178613 C. Mauduit, J. Rivat: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Annals of Mathematics, Vol. 171, No. 3, 1591-1646, 2010
%D A178613 H Schubart: Einfuehrung in die klassische und moderne Zahlentheorie Vieweg, Braunschweig, 1974
%e A178613 37 = prime(12) and 73 = prime(21) are an emirp pair with equal digit sums of the indices 1+2 = 3 = 2+1, which puts 37 into the sequence.
%e A178613 359 = prime(72) and 953 = prime(162) are an emirp pair with digit sums 7+2 = 9 = 1+6+2, which puts 359 into the sequence.
%e A178613 The 6th term is from the pair (10711 = prime(1306), 11701 = prime(1405)), see A033548
%e A178613 16th term: (17959 = prime(2059), 95971 = prime(9250)).
%e A178613 21st term: (34589 = prime(3694), 98543 = prime(9463)).
%t A178613 f[n_] := Plus @@ IntegerDigits@ PrimePi@n; fQ[n_] := Block[{id = IntegerDigits@n}, rid = Reverse@ id; q = FromDigits@ rid; rid != id && PrimeQ@ FromDigits@ rid && n < q && f@n == f@q]; lst = {}; p = 13; While[p < 102148, If[ fQ@p, AppendTo[lst, p]]; p = NextPrime@p]; lst (* _Robert G. Wilson v_, Jul 31 2010 *)
%Y A178613 Cf. A006567, A156793.
%K A178613 base,nonn
%O A178613 1,1
%A A178613 Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 30 2010
%E A178613 More terms from _Robert G. Wilson v_, Jul 31 2010