cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178705 Odd composite numbers q such that there exists a, 2<=a<=q-2, such that a^d == 1 mod q where d = A000265(q-1). Thus q is a strong pseudoprime in base a.

Original entry on oeis.org

49, 91, 121, 133, 169, 175, 217, 231, 247, 259, 301, 325, 341, 343, 361, 385, 403, 427, 435, 451, 469, 475, 481, 511, 529, 553, 559, 561, 589, 595, 637, 645, 651, 671, 679, 703, 715, 721, 763, 775, 781, 793, 805, 817, 841, 847, 861, 871, 889, 891, 925, 931, 949, 961, 973, 1001, 1015, 1027, 1035, 1045
Offset: 1

Views

Author

Karsten Meyer, Dec 26 2010

Keywords

Comments

Odd composite numbers q such that gcd(A000010(q), A000265(q-1)) > 1. - Robert Israel, Dec 20 2017

Examples

			18^3 == 1 mod 49
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)
      if isprime(n) then return false fi;
      igcd((n-1)/2^padic:-ordp(n-1,2), numtheory:-phi(n)) > 1
    end proc:
    select(filter, [seq(i,i=9..2000,2)]); # Robert Israel, Dec 20 2017
  • Mathematica
    filterQ[n_] := If[PrimeQ[n], False, GCD[(n-1)/2^IntegerExponent[n-1, 2], EulerPhi[n]] > 1];
    Select[Range[9, 2000, 2], filterQ] (* Jean-François Alcover, Sep 25 2020, after Robert Israel *)

Formula

a^d == 1 mod q

Extensions

Corrected by Robert Israel, Dec 20 2017