A178705 Odd composite numbers q such that there exists a, 2<=a<=q-2, such that a^d == 1 mod q where d = A000265(q-1). Thus q is a strong pseudoprime in base a.
49, 91, 121, 133, 169, 175, 217, 231, 247, 259, 301, 325, 341, 343, 361, 385, 403, 427, 435, 451, 469, 475, 481, 511, 529, 553, 559, 561, 589, 595, 637, 645, 651, 671, 679, 703, 715, 721, 763, 775, 781, 793, 805, 817, 841, 847, 861, 871, 889, 891, 925, 931, 949, 961, 973, 1001, 1015, 1027, 1035, 1045
Offset: 1
Keywords
Examples
18^3 == 1 mod 49
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) if isprime(n) then return false fi; igcd((n-1)/2^padic:-ordp(n-1,2), numtheory:-phi(n)) > 1 end proc: select(filter, [seq(i,i=9..2000,2)]); # Robert Israel, Dec 20 2017
-
Mathematica
filterQ[n_] := If[PrimeQ[n], False, GCD[(n-1)/2^IntegerExponent[n-1, 2], EulerPhi[n]] > 1]; Select[Range[9, 2000, 2], filterQ] (* Jean-François Alcover, Sep 25 2020, after Robert Israel *)
Formula
a^d == 1 mod q
Extensions
Corrected by Robert Israel, Dec 20 2017
Comments