This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178719 #56 Oct 14 2024 02:57:30 %S A178719 0,0,1,7,44,266,1599,9597,57586,345520,2073125,12438755,74632536, %T A178719 447795222,2686771339,16120628041,96723768254,580342609532, %U A178719 3482055657201,20892333943215,125354003659300,752124021955810,4512744131734871,27076464790409237,162458788742455434,974752732454732616 %N A178719 Partial sums of (1/5)*floor(6^n/7). %C A178719 Partial sums of A033116. %H A178719 Vincenzo Librandi, <a href="/A178719/b178719.txt">Table of n, a(n) for n = 0..500</a> %H A178719 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %H A178719 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-5,-7,6). %F A178719 a(n) = (1/5)*round((24*6^n - 70*n - 49)/140). %F A178719 a(n) = (1/5)*floor((12*6^n - 35*n - 12)/70). %F A178719 a(n) = (1/5)*ceiling((12*6^n - 35*n - 37)/70). %F A178719 a(n) = (1/5)*round((12*6^n - 35*n - 12)/70). %F A178719 a(n) = a(n-2) + (6^(n-1) - 1)/5, n > 1. %F A178719 a(n) = 7*a(n-1) - 5*a(n-2) - 7*a(n-3) + 6*a(n-4), n > 3. %F A178719 G.f.: x^2 / ( (1+x)*(1-6*x)*(1-x)^2 ). %F A178719 a(n) = (24*6^n - 70*n + 25*(-1)^n - 49)/700. - _Bruno Berselli_, Feb 18 2011 %F A178719 a(n) = (floor(6^(n+1)/35) - floor((n+1)/2))/5. - _Seiichi Manyama_, Dec 22 2023 %e A178719 a(3) = (1/5)*(floor(6^1/7) + floor(6^2/7) + floor(6^3/7)) = (1/5)*(0+5+30) = (1/5)*35 = 7. %p A178719 A178719 := proc(n) add( floor(6^i/7)/5,i=0..n) ; end proc: %t A178719 f[n_] := Floor[6^n/7]/5; Accumulate@ Array[f, 22] %t A178719 CoefficientList[Series[x^2/((1+x)(1-6x)(1-x)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 26 2014 *) %o A178719 (Magma) [(1/5)*Floor((12*6^n-35*n-12)/70): n in [0..30]]; // _Vincenzo Librandi_, Jun 21 2011 %o A178719 (PARI) vector(30, n, n--; (((12*6^n-35*n-12)/70)\1)/5) \\ _G. C. Greubel_, Jan 24 2019 %o A178719 (Sage) [floor((12*6^n-35*n-12)/70)/5 for n in (0..30)] # _G. C. Greubel_, Jan 24 2019 %Y A178719 Column k=6 of A368296. %Y A178719 Cf. A033116. %K A178719 nonn,less,easy %O A178719 0,4 %A A178719 _Mircea Merca_, Dec 26 2010