cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178722 Number of ways to place 6 nonattacking queens on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 196, 3072, 42768, 550000, 3573856, 25009344, 102800672, 454967744, 1441238400, 4811118592, 12616778208, 34692705648, 79514466480, 189770459200, 392908083876, 842040318416, 1610365515264, 3172863442176, 5692888800000
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 07 2010

Keywords

Comments

Previous recurrence (order 142) was right, but Artem M. Karavaev and his team found (Jun 19 2011) another recurrence with smaller order (124).

Crossrefs

Programs

  • Mathematica
    (* General formulas (denominator and recurrence) for k nonattacking queens on an n X n toroidal board: *) inversef[j_]:=(m=2;While[j>2*Fibonacci[m-1],m=m+1];m); denomt[k_,par_]:=(x-1)^(2k+1)*Product[Cyclotomic[j,x]^(2*(k-inversef[j]+1)+par),{j,2,2*Fibonacci[k-1]}]; Table[denomt[k,1],{k,1,7}]//TraditionalForm Table[Sum[Coefficient[Expand[denomt[k,1]],x,i]*Subscript[a,n-i],{i,0,Exponent[denomt[k,1],x]}],{k,1,7}]//TraditionalForm

Formula

Explicit formula (Artem M. Karavaev, after values computed by Andrey Khalyavin, Jun 19 2011):
n^2/6*(n^10/120-5*n^9/8+125*n^8/6-3275*n^7/8+316073*n^6/60-371219*n^5/8+282695*n^4-4676911*n^3/4+15512322*n^2/5-4626944*n+2452536
+(n^8/4-14*n^7+1411*n^6/4-5227*n^5+199399*n^4/4-313302*n^3+2530255*n^2/2-2984844*n+3117968)*Floor[n/2]
+(24*n^4-864*n^3+12852*n^2-95112*n+309128)*Floor[n/3]+(12*n^4-432*n^3+6180*n^2-42384*n+117584)*Floor[(n+1)/3]
+(27*n^4-1044*n^3+16044*n^2-118296*n+350388)*Floor[n/4]+(27*n^4-1044*n^3+16044*n^2-118296*n+360348)*Floor[(n+1)/4]
+(96*n^2-1920*n+22248)*Floor[n/5]+(48*n^2-960*n+10224)*Floor[(n+1)/5]+(48*n^2-960*n+12024)*Floor[(n+2)/5]+(48*n^2-960*n+10224)*Floor[(n+3)/5]
+(492*n^2-10344*n+73960)*Floor[(n+1)/6]
+1968*Floor[n/7]+984*Floor[(n+1)/7]+984*Floor[(n+2)/7]+984*Floor[(n+3)/7]+984*Floor[(n+4)/7]+984*Floor[(n+5)/7]
+9960*Floor[n/8]+9960*Floor[(n+3)/8]
+1800*Floor[(n+1)/10]-1800*Floor[(n+2)/10]+1800*Floor[(n+3)/10]).
Alternative formula (Vaclav Kotesovec, after values computed by Andrey Khalyavin, Jun 20 2011):
a(n) = n^2*(n^10/720-n^9/12+661*n^8/288-153*n^7/4+615887*n^6/1440-80581*n^5/24+1801697*n^4/96-295355*n^3/4+9389033*n^2/48-626899*n/2+142789469/630
+(n^8/96-7*n^7/12+1411*n^6/96-5227*n^5/24+199399*n^4/96-52217*n^3/4+843309*n^2/16-745349*n/6+2315441/18)*(-1)^n
+(9*n^4/4-87*n^3+1337*n^2-9858*n+29614)*Cos[Pi*n/2]
+2*(123*n^2-2586*n+18490)*Cos[Pi*n/3]/9+2*(6*n^4-216*n^3+3213*n^2-23778*n+77282)*Cos[2*Pi*n/3]/9
+415*(Cos[Pi*n/4]+Cos[3*Pi*n/4])
+8/5*Cos[Pi*n/5]*(75*Cos[2*Pi*n/5]+(927-80*n+4*n^2)*Cos[3*Pi*n/5])
+328/7*(Cos[2*Pi*n/7]+Cos[4*Pi*n/7]+Cos[6*Pi*n/7])).
Recurrence: a(n) = a(n-124) + 5a(n-123) + 19a(n-122) + 53a(n-121) + 126a(n-120) + 256a(n-119) + 460a(n-118) + 731a(n-117) + 1024a(n-116) + 1234a(n-115) + 1180a(n-114) + 631a(n-113) - 677a(n-112) - 2917a(n-111) - 6108a(n-110) - 9923a(n-109) - 13657a(n-108) - 16137a(n-107) - 15876a(n-106) - 11304a(n-105) - 1172a(n-104) + 14879a(n-103) + 35916a(n-102) + 59190a(n-101) + 80301a(n-100) + 93334a(n-99) + 92030a(n-98) + 70850a(n-97) + 26815a(n-96) - 39130a(n-95) - 120942a(n-94) - 207185a(n-93) - 282105a(n-92) - 327419a(n-91) - 326009a(n-90) - 265142a(n-89) - 140929a(n-88) + 39571a(n-87) + 256518a(n-86) + 479114a(n-85) + 668872a(n-84) + 785798a(n-83) + 795775a(n-82) + 677688a(n-81) + 430187a(n-80) + 74064a(n-79) - 347112a(n-78) - 773130a(n-77) - 1134433a(n-76) - 1364780a(n-75) - 1412189a(n-74) - 1250448a(n-73) - 885628a(n-72) - 357906a(n-71) + 262286a(n-70) + 885029a(n-69) + 1413752a(n-68) + 1762777a(n-67) + 1870496a(n-66) + 1712484a(n-65) + 1305033a(n-64) + 705009a(n-63) - 705009a(n-61) - 1305033a(n-60) - 1712484a(n-59) - 1870496a(n-58) - 1762777a(n-57) - 1413752a(n-56) - 885029a(n-55) - 262286a(n-54) + 357906a(n-53) + 885628a(n-52) + 1250448a(n-51) + 1412189a(n-50) + 1364780a(n-49) + 1134433a(n-48) + 773130a(n-47) + 347112a(n-46) - 74064a(n-45) - 430187a(n-44) - 677688a(n-43) - 795775a(n-42) - 785798a(n-41) - 668872a(n-40) - 479114a(n-39) - 256518a(n-38) - 39571a(n-37) + 140929a(n-36) + 265142a(n-35) + 326009a(n-34) + 327419a(n-33) + 282105a(n-32) + 207185a(n-31) + 120942a(n-30) + 39130a(n-29) - 26815a(n-28) - 70850a(n-27) - 92030a(n-26) - 93334a(n-25) - 80301a(n-24) - 59190a(n-23) - 35916a(n-22) - 14879a(n-21) + 1172a(n-20) + 11304a(n-19) + 15876a(n-18) + 16137a(n-17) + 13657a(n-16) + 9923a(n-15) + 6108a(n-14) + 2917a(n-13) + 677a(n-12) - 631a(n-11) - 1180a(n-10) - 1234a(n-9) - 1024a(n-8) - 731a(n-7) - 460a(n-6) - 256a(n-5) - 126a(n-4) - 53a(n-3) - 19a(n-2) - 5a(n-1).