This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178739 #40 Feb 21 2025 18:06:44 %S A178739 48,80,112,162,176,208,272,304,368,405,464,496,567,592,656,688,752, %T A178739 848,891,944,976,1053,1072,1136,1168,1250,1264,1328,1377,1424,1539, %U A178739 1552,1616,1648,1712,1744,1808,1863,1875,2032,2096,2192,2224,2349,2384,2416,2511 %N A178739 Product of the 4th power of a prime (A030514) and a different prime (p^4*q). %C A178739 Subsequence of A030628. %H A178739 T. D. Noe, <a href="/A178739/b178739.txt">Table of n, a(n) for n = 1..1000</a> %H A178739 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A178739 a(n) ~ kn log n with k = 1/P(4) = 1/A085964 = 12.98817.... - _Charles R Greathouse IV_, Feb 23 2017 %t A178739 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,4}; Select[Range[10000], f] (* _Vladimir Joseph Stephan Orlovsky_, May 03 2011 *) %t A178739 max = 500000; A178739 = DeleteCases[Union[Table[Prime[p] Prime[q]^4 Boole[p != q], {p, PrimePi[max/16]}, {q, PrimePi[max/2]}]], 0]; Take[A178739, 50] (* _Alonso del Arte_, Aug 05 2012 *) %o A178739 (PARI) list(lim)=my(v=List(),t);forprime(p=2,(lim\2)^(1/4), t=p^4; forprime(q=2,lim\t, if(p==q,next); listput(v,t*q))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A178739 (Python) %o A178739 from sympy import primepi, primerange, integer_nthroot %o A178739 def A178739(n): %o A178739 def bisection(f,kmin=0,kmax=1): %o A178739 while f(kmax) > kmax: kmax <<= 1 %o A178739 kmin = kmax >> 1 %o A178739 while kmax-kmin > 1: %o A178739 kmid = kmax+kmin>>1 %o A178739 if f(kmid) <= kmid: %o A178739 kmax = kmid %o A178739 else: %o A178739 kmin = kmid %o A178739 return kmax %o A178739 def f(x): return n+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0]) %o A178739 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A178739 Cf. A065036, A030514, A030628, A085986, A085987. %K A178739 easy,nonn %O A178739 1,1 %A A178739 _Will Nicholes_, Jun 08 2010