This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178742 #40 Sep 08 2022 08:45:54 %S A178742 0,0,0,0,1,4,11,25,53,109,222,449,904,1814,3634,7274,14555,29118, %T A178742 58245,116499,233007,466023,932056,1864123,3728258,7456528,14913068, %U A178742 29826148,59652309,119304632,238609279,477218573,954437161 %N A178742 Partial sums of floor(2^n/9). %C A178742 Partial sums of A153234. %H A178742 Vincenzo Librandi, <a href="/A178742/b178742.txt">Table of n, a(n) for n = 0..1000</a> %H A178742 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %H A178742 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,4,-5,2). %F A178742 a(n) = round((8*2^n - 18*n - 9)/36). %F A178742 a(n) = floor((4*2^n - 9*n + 2)/18). %F A178742 a(n) = ceiling((4*2^n - 9*n - 11)/18). %F A178742 a(n) = round((4*2^n - 9*n - 4)/18). %F A178742 a(n) = a(n-6) + 7*2^(n-5) - 3, n > 5. %F A178742 a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 4*a(n-4) - 5*a(n-5) + 2*a(n-6). %F A178742 G.f.: x^4 / ( (1-2*x)*(1+x)*(1-x+x^2)*(1-x)^2 ). %e A178742 a(6) = 0 + 0 + 0 + 0 + 1 + 3 + 7 = 11. %p A178742 A178742 := proc(n) add( floor(2^i/9),i=0..n) ; end proc: %t A178742 CoefficientList[Series[x^4/((1-2x)(1+x)(1-x+x^2)(1-x)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 26 2014 *) %t A178742 LinearRecurrence[{4,-5,1,4,-5,2},{0,0,0,0,1,4},40] (* _Harvey P. Dale_, Jan 25 2015 *) %o A178742 (Magma) [&+[Floor(2^k/9): k in [0..n]]: n in [0..25]]; // _Bruno Berselli_, Apr 26 2011 %o A178742 (Magma) I:=[0,0,0,0,1,4]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+4*Self(n-4)-5*Self(n-5)+2*Self(n-6): n in [1..40]]; // _Vincenzo Librandi_, Mar 26 2014 %o A178742 (PARI) vector(30, n, n--; ((4*2^n-9*n+2)/18)\1) \\ _G. C. Greubel_, Jan 24 2019 %o A178742 (Sage) [floor((4*2^n-9*n+2)/18) for n in (0..30)] # _G. C. Greubel_, Jan 24 2019 %Y A178742 Cf. A153234. %K A178742 nonn,less %O A178742 0,6 %A A178742 _Mircea Merca_, Dec 26 2010