cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178743 a(n) = A000041(n) mod 10.

This page as a plain text file.
%I A178743 #21 Feb 16 2025 08:33:12
%S A178743 1,1,2,3,5,7,1,5,2,0,2,6,7,1,5,6,1,7,5,0,7,2,2,5,5,8,6,0,8,5,4,2,9,3,
%T A178743 0,3,7,7,5,5,8,3,4,1,5,4,8,4,3,5,6,3,9,1,5,6,3,4,0,0,7,5,6,9,0,8,0,9,
%U A178743 5,5,8,5,3,9,0,4,1,3,4,0,6,7,5,9,0,7,2,3,9,5,3,9,7,7,0,9,4,0,6,5,2,6,9,0,5
%N A178743 a(n) = A000041(n) mod 10.
%C A178743 From _Johannes W. Meijer_, Jul 08 2011: (Start)
%C A178743 We observe for the last digit a(n) of the partition function p(n) = A000041(n) that the probabilities of p(d = 0) = 0.18 and p(d = 5) = 0.18 while for the other digits p(d = 1, 2, 3, 4, 6, 7, 8, 9) = 0.08, see the examples. Ramanujan, who had access to the first two hundred p(n) thanks to MacMahon, observed this anomaly and subsequently proved that p(5*n+4) mod 5 = 0, see the references and links.
%C A178743 The first digit of the partition function p(n) follows Benford’s Law. This law states that the probability of having first digit d, 1 <= d <= 9, is p(d) = log_10(1+1/d), see the crossrefs. (End)
%D A178743 Robert Kanigel, The man who knew infinity: A life of the genius Ramanujan (1991) pp. 246-254 and pp. 299-307.
%H A178743 Seiichi Manyama, <a href="/A178743/b178743.txt">Table of n, a(n) for n = 0..10000</a>
%H A178743 Scott Ahlgren and Ken Ono, <a href="http://www.ams.org/notices/200109/fea-ahlgren.pdf">Addition and Counting: The Arithmetic of Partitions</a>, Notices of the AMS, 48 (2001) pp. 978-984.
%H A178743 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionPCongruences.html">Partition Function P Congruences</a>
%H A178743 <a href="/index/Fi#final">Index entries for sequences related to final digits of numbers</a>
%H A178743 <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>
%F A178743 a(n) = p(n) mod 10 with p(n) = A000041(n) the partition function.
%e A178743 From _Johannes W. Meijer_, Jul 08 2011: (Start)
%e A178743 d     p(N=200) p(N=2000) p(N=4000) p(N=6000)
%e A178743 0     0.16000   0.17750   0.17600   0.18067
%e A178743 1     0.08500   0.08150   0.08125   0.07833
%e A178743 2     0.08000   0.08400   0.08075   0.08033
%e A178743 3     0.10000   0.08350   0.08150   0.07917
%e A178743 4     0.05500   0.08050   0.07950   0.08233
%e A178743 5     0.18500   0.16900   0.17625   0.17817
%e A178743 6     0.08500   0.07500   0.07725   0.07867
%e A178743 7     0.09000   0.08600   0.08700   0.08283
%e A178743 8     0.06500   0.07650   0.07450   0.07517
%e A178743 9     0.09500   0.08650   0.08600   0.08433
%e A178743 Total 1.00000   1.00000   1.00000   1.00000 (End)
%t A178743 Table[ Mod[ PartitionsP@n, 10], {n, 0, 111}]
%o A178743 (PARI) a(n) = numbpart(n) % 10; \\ _Michel Marcus_, Apr 21 2019
%Y A178743 Cf. A000041, A040051.
%Y A178743 Cf. A141053 (F(5*n+3) and Benford’s Law). - _Johannes W. Meijer_, Jul 08 2011
%K A178743 nonn,base
%O A178743 0,3
%A A178743 _Robert G. Wilson v_, Jun 08 2010
%E A178743 Edited by _N. J. A. Sloane_, Jun 08 2010