cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178748 Total number of '1' bits in the terms of 'rows' of A178746.

This page as a plain text file.
%I A178748 #14 Aug 27 2021 11:31:21
%S A178748 1,2,7,14,37,80,187,410,913,1988,4327,9326,20029,42776,91027,192962,
%T A178748 407785,859244,1805887,3786518,7922581,16544192,34486507,71769194,
%U A178748 149130817,309446420,641262487,1327264190,2744006893,5666970728,11691855427,24099538706,49630733209
%N A178748 Total number of '1' bits in the terms of 'rows' of A178746.
%C A178748 Sum of adjacent terms equals the difference of adjacent terms in A127981. - _David Scambler_, Jun 10 2010
%H A178748 Andrew Howroyd, <a href="/A178748/b178748.txt">Table of n, a(n) for n = 0..1000</a>
%H A178748 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-4,-4).
%F A178748 G.f: (1/2)*x^3 - 1/4 + (x^4 + x^3 - (3/4)*x^2 - (1/2)*x + 1/4)*F(x) = 0. [From GUESSS]
%F A178748 From _David Scambler_, Jun 10 2010: (Start)
%F A178748 a(n) = (2^n*(3*n+8) + (3*n+1)*(-1)^n)/9.
%F A178748 a(n) + a(n-1) = A127981(n+1) - A127981(n).
%F A178748 (End)
%F A178748 From _Colin Barker_, Mar 04 2020: (Start)
%F A178748 G.f.: (1 - 2*x^3) / ((1 + x)^2*(1 - 2*x)^2).
%F A178748 a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>3.
%F A178748 (End)
%e A178748 a(0) = bitcount(1) = 1.
%e A178748 a(1) = bitcount(3) = 2.
%e A178748 a(2) = bitcount(6) + bitcount(6) + bitcount(7) = 2 + 2 + 3 = 7.
%t A178748 LinearRecurrence[{2,3,-4,-4},{1,2,7,14},40] (* _Harvey P. Dale_, Aug 27 2021 *)
%o A178748 (PARI) seq(n)={my(a=vector(n+1), f=0, p=0, k=1, s=0); while(k<=#a, my(b=bitxor(p+1,p)); f=bitxor(f,b); p=bitxor(p, bitand(b,f)); if(p>2^k, a[k]=s; k++; s=0); s+=hammingweight(p)); a} \\ _Andrew Howroyd_, Mar 03 2020
%o A178748 (PARI) a(n) = {(2^n*(3*n+8) + (3*n+1)*(-1)^n)/9} \\ _Andrew Howroyd_, Mar 03 2020
%o A178748 (PARI) Vec((1 - 2*x^3) / ((1 + x)^2*(1 - 2*x)^2) + O(x^30)) \\ _Colin Barker_, Mar 04 2020
%Y A178748 Cf. A178747 (sum of terms in rows of A178746).
%Y A178748 Cf. A127981.
%K A178748 nonn,easy
%O A178748 0,2
%A A178748 _David Scambler_, Jun 09 2010
%E A178748 Terms a(16) and beyond from _Andrew Howroyd_, Mar 03 2020