cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178797 Number of regular octahedra that can be formed using the points in an (n+1)X(n+1)X(n+1) lattice cube.

This page as a plain text file.
%I A178797 #13 Jan 24 2016 02:49:56
%S A178797 0,1,8,32,104,261,544,1000,1696,2759,4296,6434,9352,13243,18304,24774,
%T A178797 32960,43223,55976,71752,90936,113973,141312,173436,210960,254587,
%U A178797 305000,364406,432824,511421,600992,702556,817200,946131,1090392,1251238
%N A178797 Number of regular octahedra that can be formed using the points in an (n+1)X(n+1)X(n+1) lattice cube.
%H A178797 Eugen J. Ionascu, <a href="/A178797/b178797.txt">Table of n, a(n) for n = 1..100</a>
%H A178797 Eugen J. Ionascu, <a href="http://arXiv.org/abs/1007.1655">Counting all regular octahedra in {0,1,...,n}^3</a>, arXiv:1007.1655 [math.NT], 2010.
%H A178797 Eugen J. Ionascu, Andrei Markov, <a href="http://dx.doi.org/10.1016/j.jnt.2010.07.008">Platonic solids in Z^3</a>, Journal of Number Theory, Volume 131, Issue 1, January 2011, Pages 138-145.
%e A178797 a(2)=1 because there is 1 way to form a regular octahedron using points of a {0,1,2}^3 lattice cube.
%Y A178797 Cf. A102698, A103158, A098928.
%K A178797 nonn
%O A178797 1,3
%A A178797 _Eugen J. Ionascu_, Jun 15 2010
%E A178797 Edited by _Ray Chandler_, Jul 27 2010