This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178797 #13 Jan 24 2016 02:49:56 %S A178797 0,1,8,32,104,261,544,1000,1696,2759,4296,6434,9352,13243,18304,24774, %T A178797 32960,43223,55976,71752,90936,113973,141312,173436,210960,254587, %U A178797 305000,364406,432824,511421,600992,702556,817200,946131,1090392,1251238 %N A178797 Number of regular octahedra that can be formed using the points in an (n+1)X(n+1)X(n+1) lattice cube. %H A178797 Eugen J. Ionascu, <a href="/A178797/b178797.txt">Table of n, a(n) for n = 1..100</a> %H A178797 Eugen J. Ionascu, <a href="http://arXiv.org/abs/1007.1655">Counting all regular octahedra in {0,1,...,n}^3</a>, arXiv:1007.1655 [math.NT], 2010. %H A178797 Eugen J. Ionascu, Andrei Markov, <a href="http://dx.doi.org/10.1016/j.jnt.2010.07.008">Platonic solids in Z^3</a>, Journal of Number Theory, Volume 131, Issue 1, January 2011, Pages 138-145. %e A178797 a(2)=1 because there is 1 way to form a regular octahedron using points of a {0,1,2}^3 lattice cube. %Y A178797 Cf. A102698, A103158, A098928. %K A178797 nonn %O A178797 1,3 %A A178797 _Eugen J. Ionascu_, Jun 15 2010 %E A178797 Edited by _Ray Chandler_, Jul 27 2010