cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178844 First nonzero Fermat quotient mod the n-th prime.

Original entry on oeis.org

1, 1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153
Offset: 1

Views

Author

Jonathan Sondow, Jun 24 2010

Keywords

Comments

First nonzero value of q_p(m) mod p with gcd(m,p) = 1, where q_p(m) = (m^(p-1) - 1)/p is the Fermat quotient of p to the base m and p is the n-th prime p_n.
It is believed that a(n) = q_p(3) mod p, if p = p_n is a Wieferich prime A001220. See Section 1.1 in Ostafe-Shparlinski (2010).
See additional comments, references, links, and cross-refs in A001220 and A178815.

Examples

			p_1 = 2 and (m^1 - 1)/2 = 0, 1 == 0, 1 (mod 2) for m = 1, 3, so a(1) = 1.
p_5 = 11 and (m^10 - 1)/11 = 0, 93 == 0, 5 (mod 7) for m = 1, 2, so a(4) = 5.
p_183 = 1093 and (m^1092 - 1)/1093 == 0, 0, 312 (mod 1093) for m = 1, 2, 3, so a(183) = 312.
Similarly, a(490) = 7.
		

Crossrefs

Formula

a(n) = q_p(A178815(n)) mod p, where p = p_n.
a(n) = A130912(n), if n > 1 and p_n is not a Wieferich prime. (Note: the offset of A130912 is n = 2.)

Extensions

Nonexistent A-numbers removed by Jonathan Sondow, Jun 26 2010