A178854 Asymptotic value of odd Catalan numbers mod 2^n.
0, 1, 1, 5, 13, 29, 29, 93, 221, 221, 733, 1757, 3805, 7901, 7901, 24285, 57053, 122589, 122589, 384733, 384733, 384733, 2481885, 2481885, 10870493, 10870493, 10870493, 10870493, 145088221
Offset: 0
Keywords
Examples
The odd Catalan numbers mod 2^6=64 are 1,5,45,61,29,29,29, so a(6)=29.
Links
- Shu-Chung Liu and Jean C.-C. Yeh, Catalan numbers modulo 2^k, J. Int. Seq. 13 (2010), article 10.5.4.
Crossrefs
Cf. A038003 (odd Catalan numbers).
Programs
-
Maple
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc: A038003 := proc(n) A000108(2^n-1) ; end proc: A178854 := proc(n) if n = 0 then 0; else modp(A038003(n-1),2^n) ; end if; end proc: for n from 0 do printf("%d,\n",A178854(n)) ; end do: # R. J. Mathar, Jun 28 2010
-
Mathematica
(* first do *) Needs["DiscreteMath`CombinatorialFunctions`"] (* then *) f[n_] := Mod[ CatalanNumber[2^n - 1], 2^n]; Array[f, 25, 0] (* Robert G. Wilson v, Jun 28 2010 *)
Formula
a(n) = remainder(Catalan(2^m-1), 2^n) for any m >= n-1.
Extensions
a(12)-a(24) from Robert G. Wilson v, Jun 28 2010
a(25)-a(28) from Robert G. Wilson v, Jul 23 2010
Comments