cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178854 Asymptotic value of odd Catalan numbers mod 2^n.

Original entry on oeis.org

0, 1, 1, 5, 13, 29, 29, 93, 221, 221, 733, 1757, 3805, 7901, 7901, 24285, 57053, 122589, 122589, 384733, 384733, 384733, 2481885, 2481885, 10870493, 10870493, 10870493, 10870493, 145088221
Offset: 0

Views

Author

David A. Madore, Jun 18 2010

Keywords

Comments

For every n, the odd Catalan numbers C(2^m-1) are eventually constant mod 2^n (namely for m >= n-1): then a(n) is the asymptotic value of the remainder.

Examples

			The odd Catalan numbers mod 2^6=64 are 1,5,45,61,29,29,29, so a(6)=29.
		

Crossrefs

Cf. A038003 (odd Catalan numbers).

Programs

  • Maple
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A038003 := proc(n) A000108(2^n-1) ; end proc:
    A178854 := proc(n) if n = 0 then 0; else modp(A038003(n-1),2^n) ; end if; end proc:
    for n from 0 do printf("%d,\n",A178854(n)) ; end do: # R. J. Mathar, Jun 28 2010
  • Mathematica
    (* first do *) Needs["DiscreteMath`CombinatorialFunctions`"] (* then *) f[n_] := Mod[ CatalanNumber[2^n - 1], 2^n]; Array[f, 25, 0] (* Robert G. Wilson v, Jun 28 2010 *)

Formula

a(n) = remainder(Catalan(2^m-1), 2^n) for any m >= n-1.

Extensions

a(12)-a(24) from Robert G. Wilson v, Jun 28 2010
a(25)-a(28) from Robert G. Wilson v, Jul 23 2010