This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178872 #40 Feb 18 2023 10:01:20 %S A178872 0,1,3,12,49,195,780,3121,12483,49932,199729,798915,3195660,12782641, %T A178872 51130563,204522252,818089009,3272356035,13089424140,52357696561, %U A178872 209430786243,837723144972,3350892579889,13403570319555,53614281278220,214457125112881 %N A178872 Partial sums of round(4^n/7). %C A178872 a(n) (prefixed with a 0) and its higher order differences define the following infinite array: %C A178872 0, 0, 1, 3, 12, 49,.. %C A178872 0, 1, 2, 9, 37, 146,... %C A178872 1, 1, 7, 28, 109, 439... - _Paul Curtz_, Jun 08 2011 %H A178872 Vincenzo Librandi, <a href="/A178872/b178872.txt">Table of n, a(n) for n = 0..500</a> %H A178872 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,3,4). %H A178872 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %F A178872 a(n) = round((8*4^n+1)/42) = round((4*4^n-4)/21). %F A178872 a(n) = floor((4*4^n+5)/21). %F A178872 a(n) = ceiling((4*4^n-4)/21). %F A178872 a(n) = a(n-3) + 3*4^(n-2) = a(n-3) + A164346(n-2) for n > 2. %F A178872 a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3) for n > 2. %F A178872 G.f.: -x/((4*x-1)*(x^2+x+1)). %F A178872 a(n+1) - 4*a(n) = A049347(n). - _Paul Curtz_, Jun 08 2011 %e A178872 a(3)=0+1+2+9=12. %p A178872 A178872 := proc(n) add( round(4^i/7),i=0..n) ; end proc: %t A178872 Join[{a = b = 0}, Table[c = 4^n - a - b; a = b; b = c, {n, 0, 100}]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 28 2011 *) %t A178872 Accumulate[Round[4^Range[0,30]/7]] (* or *) LinearRecurrence[{3,3,4},{0,1,3},30] (* _Harvey P. Dale_, Feb 18 2023 *) %o A178872 (Magma) [Floor((4*4^n+5)/21): n in [0..30]]; // _Vincenzo Librandi_, May 01 2011 %o A178872 (PARI) a(n) = (4^(n+1)+5)\21; \\ _Altug Alkan_, Oct 05 2017 %Y A178872 Cf. A049347, A164346. %K A178872 nonn,less,easy %O A178872 0,3 %A A178872 _Mircea Merca_, Dec 28 2010