cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178881 Sum of all pairs of greatest common divisors for (i,j) where 1 <= i < j <= n.

Original entry on oeis.org

0, 1, 3, 7, 11, 20, 26, 38, 50, 67, 77, 105, 117, 142, 172, 204, 220, 265, 283, 335, 379, 420, 442, 518, 558, 607, 661, 737, 765, 870, 900, 980, 1052, 1117, 1199, 1331, 1367, 1440, 1526, 1666, 1706, 1859, 1901, 2025, 2169, 2258, 2304, 2496, 2580, 2725
Offset: 1

Views

Author

Enric Cusell (cusell(AT)gmail.com), Jun 20 2010

Keywords

Comments

You could also be looking for the case where i = j is allowed, which gives A272718(n) = a(n) + n*(n+1)/2.

Examples

			Denote gcd(i,j) by (i,j), then a(6) = (1,2) + (1,3) + (1,4) + (1,5) + (1,6) + (2,3) + (2,4) + (2,5) + (2,6) + (3,4) + (3,5) + (3,6) + (4,5) + (4,6) + (5,6) = 20. - _Jianing Song_, Feb 07 2021
		

Crossrefs

Partial sums of A006579.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Accumulate[Array[s, 100]] (* Amiram Eldar, Dec 10 2024 *)
  • PARI
    a(n)=sum(k=1, n, eulerphi(k)*(n\k)^2)/2-n*(n+1)/4 \\ Charles R Greathouse IV, Apr 11 2016
    
  • PARI
    first(n)=my(v=vector(n),t); for(k=1,n, t=eulerphi(k); for(m=k,n, v[m] += t*(m\k)^2)); v/2-vector(n,k,k*(k+1)/4) \\ Charles R Greathouse IV, Apr 11 2016

Formula

a(n) = Sum_{i=1..n-1, j=i+1..n} gcd(i,j).
From Jianing Song, Feb 07 2021: (Start)
a(n) = (A018806(n) - n*(n+1)/2) / 2 = (Sum_{k=1..n} phi(k)*(floor(n/k))^2 - n*(n+1)/2) / 2, phi = A000010.
a(n) = A018806(n) - A272718(n).
According to Bordellès (2007), a(n) = (3/Pi^2)*n^2*log(n) + k*n^2 + O(n^(1+theta+epsilon)), where k = (3/Pi^2)*(gamma - 1/2 + log(A^12/(2*Pi))), gamma = A001620, A ~= 1.282427129 is the Glaisher-Kinkelin constant A074962, theta is a certain constant defined in terms of the divisor function and known to lie between 1/4 and 131/416, and epsilon is any positive number. See also A272718. (End)