This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178899 #20 Nov 20 2020 05:53:12 %S A178899 2,7,11,19,23,43,53,73,79,97,103,109,127,139,151,157,163,181,193,199, %T A178899 211,1873,1999,2017,2053,2089,2143,2161,2179,2251,2269,2287,2341,2377, %U A178899 2467,2503,2521,2539,2557,2593,2647,2683,2719,2791,2917,2953,2971,3061,3079 %N A178899 Numbers which are both primes and problimes (third definition). %H A178899 Alois P. Heinz, <a href="/A178899/b178899.txt">Table of n, a(n) for n = 1..1000</a> %H A178899 M. D. Hirschhorn, <a href="http://www.jstor.org/stable/2319173">How unexpected is the prime number theorem?</a>, Amer. Math. Monthly, 80 (1973), 675-677. %H A178899 M. D. Hirschhorn, <a href="/A003066/a003066.pdf">How unexpected is the prime number theorem?</a>, Amer. Math. Monthly, 80 (1973), 675-677. [Annotated scanned copy] %H A178899 R. C. Vaughan, <a href="http://blms.oxfordjournals.org/content/6/3/337.extract">The problime number theorem</a>, Bull. London Math. Soc., 6 (1974), 337-340. %F A178899 A000040 INTERSECTION A003068. %p A178899 b:= proc(n) option remember; local k; %p A178899 if n=1 then c(2):= 1; 2 %p A178899 else k:= ceil(b(n-1) +1/mul((1-1/b(j)), j=1..n-1)); %p A178899 c(k):= n; k %p A178899 fi %p A178899 end: %p A178899 a:= proc(n) option remember; local k; %p A178899 if n=1 then b(1) %p A178899 else for k from c(a(n-1))+1 while not isprime(b(k)) %p A178899 do od; b(k) %p A178899 fi %p A178899 end: %p A178899 seq(a(n), n=1..50); # _Alois P. Heinz_, Dec 29 2010 %t A178899 nmax = 400; %t A178899 b[n_] := b[n] = If[n==1, 2, Ceiling[b[n-1]+1/Product[1-1/b[j], {j, 1, n-1}]]]; %t A178899 Intersection[Array[b, nmax], Prime[Range[PrimePi[b[nmax]]]]] (* _Jean-François Alcover_, Nov 20 2020 *) %Y A178899 Cf. A000040, A003068, A178532. %K A178899 nonn %O A178899 1,1 %A A178899 _Jonathan Vos Post_, Dec 29 2010 %E A178899 More terms from _Alois P. Heinz_, Dec 29 2010