cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178904 This should be related to the Coxeter transformations of the posets of partitions in rectangular boxes of size m times n.

This page as a plain text file.
%I A178904 #16 Mar 16 2020 14:25:59
%S A178904 1,-1,-1,0,-1,0,0,1,1,0,0,-1,1,-1,0,0,1,-1,-1,1,0,0,-1,2,-3,2,-1,0,0,
%T A178904 1,-3,4,4,-3,1,0,0,-1,3,-6,8,-6,3,-1,0,0,1,-3,9,-13,-13,9,-3,1,0,0,-1,
%U A178904 4,-11,19,-23,19,-11,4,-1,0,0,1,-5,13,-27,39,39,-27,13,-5,1,0,0,-1,5,-17,38,-61,71,-61,38,-17,5,-1,0
%N A178904 This should be related to the Coxeter transformations of the posets of partitions in rectangular boxes of size m times n.
%C A178904 This table is symmetric: a(m,n)=a(n,m) for all m,n>=0.
%H A178904 G. C. Greubel, <a href="/A178904/b178904.txt">Table of n, a(n) for the first 100 rows, flattened</a>
%e A178904 a(0,0) = 1, a(1,0) = a(0,1) = -1.
%e A178904 Triangle begins:
%e A178904    1;
%e A178904   -1, -1;
%e A178904    0, -1,  0;
%e A178904    0,  1,  1,  0;
%e A178904    0, -1,  1, -1,  0;
%e A178904    0,  1, -1, -1,  1,  0;
%e A178904    0, -1,  2, -3,  2, -1, 0;
%e A178904    ...
%t A178904 b[m_, n_] := (-1)^Max[m, n]*Binomial[m+n, n]; A[m_, n_] := DivisorSum[ n+m+1, b[Floor[m/#], Floor[n/#]]*MoebiusMu[#]&]/(m+n+1); Table[A[m-n, n], {m, 0, 12}, {n, 0, m}] // Flatten (* _Jean-François Alcover_, Feb 23 2017, adapted from Python *)
%o A178904 (Sage)
%o A178904 def twisted_binomial(m, n):
%o A178904     return (-1)**max(m, n) * binomial(m + n, n)
%o A178904 def coefficients_A(m, n):
%o A178904     return sum(twisted_binomial(m // d, n // d) * moebius(d)
%o A178904            for d in divisors(m + n + 1)) / (m + n + 1)
%o A178904 matrix(ZZ, 8, 8, coefficients_A)
%Y A178904 Cf. A178738, A178749, A022553, A131868, A163210.
%K A178904 sign,tabl
%O A178904 0,24
%A A178904 _F. Chapoton_, Jun 22 2010
%E A178904 Terms a(82) onward added by _G. C. Greubel_, Dec 10 2017