This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178905 #15 Mar 28 2022 01:31:52 %S A178905 0,1,2,3,4,5,6,9,10,11,12,18,19,20,22,25,36,37,38,44,45,50,51,52,74, %T A178905 75,76,77,89,90,100,101,102,105,109,147,150,153,154,165,166,173,178, %U A178905 179,180,181,204,205,210,212,214,217,293,294,299,300,301,306,308,309,329 %N A178905 Numbers without 3 consecutive equal digits in any base b >= 2. %H A178905 Michael S. Branicky, <a href="/A178905/b178905.txt">Table of n, a(n) for n = 1..10000</a> %t A178905 Prepend[Cases[Range[329], n_ /; NoneTrue[Range[2, (Sqrt[4 n - 3] - 1)/2], MatchQ[IntegerDigits[n, #], {___, d_, d_, d_, ___}] &]], 0] (* _Vladimir Reshetnikov_, Mar 20 2022 *) %o A178905 (Python) %o A178905 from sympy.ntheory.digits import digits %o A178905 def three_in_a_row(s): %o A178905 return any(s[i] == s[i+1] == s[i+2] for i in range(len(s) - 2)) %o A178905 def ok(n): %o A178905 if n < 7: return True %o A178905 b = 2 %o A178905 d = digits(n, b)[1:] %o A178905 while len(d) >= 3: %o A178905 if three_in_a_row(d): return False %o A178905 b += 1 %o A178905 d = digits(n, b)[1:] %o A178905 return True %o A178905 print([k for k in range(331) if ok(k)]) # _Michael S. Branicky_, Mar 27 2022 %Y A178905 Cf. A063037. %K A178905 base,nonn %O A178905 1,3 %A A178905 _Joonas Pohjonen_, Jun 22 2010