cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178932 Partitions into distinct parts where no subset of the summands is an arithmetic progression (of length 3 or more).

This page as a plain text file.
%I A178932 #21 Aug 20 2021 09:01:49
%S A178932 1,1,1,2,2,3,3,5,6,6,9,11,11,15,19,18,26,29,32,38,48,47,62,68,79,89,
%T A178932 108,110,135,152,166,191,223,237,275,306,345,380,429,472,537,588,650,
%U A178932 721,808,902,972,1083,1205,1316,1450,1617,1742,1919,2130,2312,2531
%N A178932 Partitions into distinct parts where no subset of the summands is an arithmetic progression (of length 3 or more).
%C A178932 a(0) = 1 as is common practice with partitions.
%H A178932 Fausto A. C. Cariboni, <a href="/A178932/b178932.txt">Table of n, a(n) for n = 0..400</a>
%H A178932 <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a>
%e A178932 There are 4 partitions of 6 into distinct parts, 6, 5+1, 4+2, and 3+2+1.  Since 3+2+1 contains the arithmetic progression 3,2,1, it won't be counted here.  Thus a(6)=3.
%t A178932 a[n_] := If[n == 0, 1, Select[IntegerPartitions[n],
%t A178932      With[{u = Union[#]}, Length[#] == Length[u] &&
%t A178932      SequencePosition[u, {b_, ___, c_, ___, d_} /;
%t A178932      b-c == c-d, 1] == {}]&] // Length];
%t A178932 Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 60}] (* _Jean-François Alcover_, Aug 20 2021 *)
%o A178932 (Sage) has_arith_prog = lambda x, size: any(len(set(differences(c))) <= 1 for c in Combinations(x,size))
%o A178932 A178932 = lambda n: Partitions(n,max_slope=-1).filter(lambda p: not has_arith_prog(sorted(p),3)).cardinality() # [_D. S. McNeil_, Dec 31 2010]
%Y A178932 Cf. A003407, A238569, A238571, A238687.
%K A178932 nonn
%O A178932 0,4
%A A178932 _David S. Newman_, Dec 30 2010