This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178958 #13 Mar 30 2012 18:38:31 %S A178958 15,28,35,39,51,52,55,63,66,70,75,76,87,95,99,111,112,115,119,123,124, %T A178958 130,135,143,147,148,154,155,159,171,172,176,183,186,187,190,195,196, %U A178958 203,207,208,215,219,232,235,238,244,246,255,267,268,275,276,279,280,286,287,291,292,295,299 %N A178958 Numbers n from A181780 that are not in A181781. %C A178958 Numbers that are Fermat pseudoprimes to some base a (2<=a<=n-2) not Euler pseudoprimes to any base a (2<=a<=n-2). %e A178958 4^(15-1) == 1 (mod 15), but 4^((15-1)/2) == 4 (mod 15) %o A178958 (PARI) %o A178958 fsp(n)= %o A178958 { /* whether n is Fermat pseudoprime to any base a where 2<=a<=n-2 */ %o A178958 for (a=2,n-2, %o A178958 if ( gcd(a,n)!=1, next() ); %o A178958 if ( (Mod(a,n))^(n-1)==+1, return(1) ) %o A178958 ); %o A178958 return(0); %o A178958 } %o A178958 esp(n)= %o A178958 { /* whether n is Euler pseudoprime to any base a where 2<=a<=n-2 */ %o A178958 local(w); %o A178958 if ( n%2==0, return(0) ); %o A178958 for (a=2,n-2, %o A178958 if ( gcd(a,n)!=1, next() ); %o A178958 w = abs(component((Mod(a,n))^((n-1)/2),2)); %o A178958 if ( (w==1) || (w==n-1), return(1) ) %o A178958 ); %o A178958 return(0); %o A178958 } %o A178958 for(n=3,300, if(isprime(n),next()); if( fsp(n) && (!esp(n)) , print1(n,", ") ); ); %Y A178958 A181780 %K A178958 nonn %O A178958 1,1 %A A178958 _Karsten Meyer_, Dec 31 2010