This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179000 #11 Jan 06 2019 03:58:30 %S A179000 1,1,2,1,4,3,1,6,8,4,1,8,15,12,5,1,10,24,24,16,6,1,12,35,40,33,20,7,1, %T A179000 14,48,60,56,42,24,8,1,16,63,84,85,72,51,28,9,1,18,80,112,120,110,88, %U A179000 60,32,10 %N A179000 Array T(n,k) read by antidiagonals: coefficient [x^k] of (1 + n*Sum_{i>=1} x^i)^2, k >= 0. %C A179000 Antidiagonal sums are in A136396. %F A179000 T(n,0) = 1; T(n,k) = n*(2+n*(k-1)), k > 0. - _R. J. Mathar_, Jan 05 2011 %e A179000 First few rows of the array: %e A179000 1 2 3 4 5 6 7 8 9 10 11 A000027 %e A179000 1 4 8 12 16 20 24 28 32 36 40 A008574 %e A179000 1 6 15 24 33 42 51 60 69 78 87 A122709 %e A179000 1 8 24 40 56 72 88 104 120 136 152 A051062 %e A179000 1 10 35 60 85 110 135 160 185 210 235 %e A179000 1 12 48 84 120 156 192 228 264 300 336 %e A179000 1 14 63 112 161 210 259 308 357 406 455 %e A179000 1 16 80 144 208 272 336 400 464 528 592 %e A179000 1 18 99 180 261 342 423 504 585 666 747 %e A179000 Row n=3 is generated by (1 + 3x + 3x^2 + 3x^3 + 3x^4 + ...)^2 = 1 + 6x + 15x^2 + 24x^3 + ..., for example. %p A179000 A179000 := proc(n,k) if k = 0 then 1; else 2*n+n^2*(k-1) ; end if; end proc: # _R. J. Mathar_, Jan 05 2011 %Y A179000 Cf. A136396, A179901. %K A179000 nonn,tabl,easy %O A179000 1,3 %A A179000 _Gary W. Adamson_, Jan 03 2011