This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179006 #34 May 01 2020 17:35:21 %S A179006 0,0,0,0,0,1,3,6,11,19,32,54,90,148,242,394,640,1039,1685,2730,4421, %T A179006 7157,11584,18748,30340,49096,79444,128548,208000,336557,544567, %U A179006 881134,1425711,2306855,3732576,6039442,9772030,15811484 %N A179006 Partial sums of floor(Fibonacci(n)/4). %C A179006 Partial sums of A004697. %H A179006 Andrew Howroyd, <a href="/A179006/b179006.txt">Table of n, a(n) for n = 0..1000</a> %H A179006 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %H A179006 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2,-2,2,-1,-1,1). %F A179006 a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) - a(n-7) + a(n-8). %F A179006 a(n) = round(Fibonacci(n+2)/4 - n/3 - 3/8). %F A179006 a(n) = round(Fibonacci(n+2)/4 - n/3 - 1/4). %F A179006 a(n) = floor(Fibonacci(n+2)/4 - n/3 - 1/12). %F A179006 a(n) = ceiling(Fibonacci(n+2)/4 - n/3 - 2/3). %F A179006 a(n) = a(n-6) + Fibonacci(n-1) - 2, n > 6. %F A179006 G.f.: -x^5/((x^2+x+1)*(x^2-x+1)*(x^2+x-1)*(x-1)^2). %e A179006 a(7) = 0 + 0 + 0 + 0 + 0 + 1 + 2 + 3 = 6. %p A179006 A179006 := proc(n) add( floor(combinat[fibonacci](i)/4),i=0..n) ; end proc: %t A179006 f[n_] := Floor[ Fibonacci@ n/4]; Accumulate@ Array[f, 38] %t A179006 LinearRecurrence[{3,-3,2,-2,2,-1,-1,1},{0,0,0,0,0,1,3,6},40] (* _Harvey P. Dale_, Jan 28 2020 *) %o A179006 (PARI) a(n)={round(fibonacci(n+2)/4 - n/3 - 3/8)} \\ _Andrew Howroyd_, May 01 2020 %Y A179006 Cf. A004697. %K A179006 nonn %O A179006 0,7 %A A179006 _Mircea Merca_, Jan 03 2011