This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179051 #18 Dec 12 2021 15:59:24 %S A179051 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4, %T A179051 4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7, %U A179051 7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10 %N A179051 Number of partitions of n into powers of 10 (cf. A011557). %C A179051 A179052 and A008592 give record values and where they occur. %H A179051 Reinhard Zumkeller, <a href="/A179051/b179051.txt">Table of n, a(n) for n = 0..10000</a> %H A179051 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A179051 a(n) = A133880(n) for n < 90; a(n) = A132272(n) for n < 100. %F A179051 a(10^n) = A145513(n). %F A179051 a(10*n) = A179052(n). %F A179051 A179052(n) = a(A008592(n)); %F A179051 a(n) = p(n,1) where p(n,k) = if k<=n then p(10*[(n-k)/10],k)+p(n,10*k) else 0^n. %F A179051 G.f.: Product_{k>=0} 1/(1 - x^(10^k)). - _Ilya Gutkovskiy_, Jul 26 2017 %e A179051 a(19) = #{10 + 9x1, 19x1} = 2; %e A179051 a(20) = #{10 + 10, 10 + 10x1, 20x1} = 3; %e A179051 a(21) = #{10 + 10 + 1, 10 + 11x1, 21x1} = 3. %t A179051 terms = 10001; %t A179051 CoefficientList[Product[1/(1 - x^(10^k)) + O[x]^terms, %t A179051 {k, 0, Log[10, terms] // Ceiling}], x] %t A179051 (* _Jean-François Alcover_, Dec 12 2021, after _Ilya Gutkovskiy_ *) %o A179051 (Haskell) %o A179051 a179051 = p 1 where %o A179051 p _ 0 = 1 %o A179051 p k m = if m < k then 0 else p k (m - k) + p (k * 10) m %o A179051 -- _Reinhard Zumkeller_, Feb 05 2012 %Y A179051 Number of partitions of n into powers of b: A018819 (b=2), A062051 (b=3). %Y A179051 Cf. A206245, A000041, A179051. %Y A179051 Cf. A133880, A132272. %Y A179051 Cf. A008592, A179052. %K A179051 nonn %O A179051 0,11 %A A179051 _Reinhard Zumkeller_, Jun 27 2010