A179067 Orders of consecutive clusters of twin primes.
1, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
The twin prime cluster ((101,103),(107,109)) of order k=2 stems from the 2k+4 = 8 consecutive primes (89, 97, 101, 103, 107, 109, 113, 127) because 97-89 <> 2, 103-101 = 109-107 = 2, 127-113 <> 2. From _Gus Wiseman_, Dec 05 2024: (Start) The leading indices of twin primes are: 2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, ... with maximal runs of terms differing by 2: {2}, {3,5,7}, {10}, {13}, {17}, {20}, {26,28}, {33,35}, {41,43,45}, {49}, {52}, ... with lengths a(n). (End)
Links
Crossrefs
Programs
-
Maple
R:= 1: count:= 1: m:= 0: q:= 5: state:= 1: while count < 100 do p:= nextprime(q); if state = 1 then if p-q = 2 then state:= 2; m:= m+1; else if m > 0 then R:= R,m; count:= count+1; fi; m:= 0 fi else state:= 1; fi; q:= p od: R; # Robert Israel, Feb 07 2023
-
Mathematica
Length/@Split[Select[Range[2,100],Prime[#+1]-Prime[#]==2&],#2==#1+2&] (* Gus Wiseman, Dec 05 2024 *)
-
PARI
a(n)={my(o,P,L=vector(3));n++;forprime(p=o=3,,L=concat(L[2..3],-o+o=p);L[3]==2||next;L[1]==2&&(P=concat(P,p))&&next;n--||return(#P);P=[p])} \\ M. F. Hasler, May 04 2015
Extensions
More terms from M. F. Hasler, May 04 2015
Comments