A179072 Chapman's "evil" determinants II.
-1, -2, 0, 0, -32, 256, 0, 0, -8192, 0, -262144, 5242880, 0, 0, -33554432, 0, -2684354560, 0, 0, 8589934592000, 0, 0, 932385860354048, 160159261748363264, -1125899906842624, 0, 0, -225179981368524800, 5260204364768739328, 0, 0
Offset: 2
Keywords
Examples
p_4 = 7 = 2*3 + 1 and the 3 X 3 matrix (L((i+j)/7)) is 1, -1, 1 -1, 1, -1 1, -1, -1 which has determinant 0, so a(4) = 0.
References
- Richard Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, Section F5.
Links
- Robin Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231-244.
- Robin Chapman, Steinitz classes of unimodular lattices, European J. Combin. 25 (2004), 487-493.
- Robin Chapman, My evil determinant problem, 2009.
- Maxim Vsemirnov, On R. Chapman's "evil determinant": case p=1 (mod 4), arXiv:1108.4031 [math.NT], 2011-2012.
- Maxim Vsemirnov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436(2012), 4101-4106.
- Wikipedia, Legendre symbol
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{p, k}, p = Prime[n]; k = (p-1)/2; Det @ Table[JacobiSymbol[ i + j, p], {i, 1, k}, {j, 1, k}]]; Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Nov 18 2018 *)
Comments