This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179097 #19 Aug 03 2022 07:34:34 %S A179097 0,1,21,161,728,2415,6538,15330,32292,62601,113575,195195,320684, %T A179097 507143,776244,1154980,1676472,2380833,3316089,4539157,6116880, %U A179097 8127119,10659902,13818630,17721340,22502025,28312011,35321391,43720516 %N A179097 Rectified heptapeton (6-simplex) numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^7. %H A179097 J. Conrad, <a href="/A179097/b179097.txt">Table of n, a(n) for n = 0..53</a> %H A179097 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A179097 Conjecture: a(n) = n*(40+26*n+5*n^2+75*n^3+75*n^4+19*n^5)/240. G.f.: x*(1+14*x+35*x^2+7*x^3)/(1-x)^7. - _Colin Barker_, Jan 09 2012 %F A179097 These conjectures are true, see A179095 for proof. %t A179097 f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^7, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* _Robert G. Wilson v_, Jul 30 2010 *) %o A179097 (PARI) a(n) = polcoeff(((x^n-1)/(x-1))^7, 2*n-2); \\ _Michel Marcus_, Feb 17 2016 %Y A179097 Cf. A179095, A179096, A179098, A179099. %K A179097 nonn,easy %O A179097 0,3 %A A179097 _Michael A. Jackson_, Jun 29 2010 %E A179097 More terms from _Robert G. Wilson v_, Jul 30 2010