A179113 Odd primes which can never divide 2^a+2^b+1.
31, 89, 127, 223, 233, 431, 601, 881, 911, 1103, 1801, 2089, 2351, 3191, 3391, 4513, 5209, 6361, 8191, 9623, 9719, 11447, 11471, 13367, 14951, 15193, 15809, 18041, 18121, 18199, 18287, 20231, 23279, 23671, 39551, 43441, 50023, 53993, 54217, 55441, 55871, 59233
Offset: 1
Keywords
Examples
31 is on the list as you can't sum any two of {1, 2, 4, 8, 16} to make 30 (mod 31).
Links
- Robert Israel, Table of n, a(n) for n = 1..129
- Mariusz Skałba, Two conjectures on primes dividing 2^a+2^b+1, Elemente der Mathematik 59 (2004), issue 4, pp. 171-173.
Programs
-
Maple
N:= 10000; # to test the first N primes for membership A179113:= proc(p) local x, R; x:= 1; R:= {}; do R:= R union {p-1-x}; if member(x,R) then return(false) end if; x:= 2*x mod p; if x = 1 then return(true) end if; end do; end proc; select(A179113,[seq(ithprime(i),i=2..N)]); # Robert Israel, May 19 2013
-
Mathematica
n = 10000; (* to test the first n primes for membership *) A179113[p_] := Module[{x = 1, r = {}}, While[True, r = r ~Union~ {p-1-x}; If[MemberQ[r, x], Return[False]]; x = Mod[2*x, p]; If[x == 1, Return[True]]]];Reap[Do[If[A179113[p], Print[p]; Sow[p]], {p, Prime /@ Range[2, n]}]][[2, 1]] (* Jean-François Alcover, Dec 02 2013, translated from Robert Israel's Maple program *)
-
PARI
forprime(p=3,1000,pol=x+O(x^p);t=2;while(t-1,pol+=x^t;t=t*2%p);pol2=pol*pol;if(!polcoeff(pol2,p-1),print1(p", ")))
Extensions
More terms from Robert Israel, May 19 2013
Comments
Tomohiro Yamada, Aug 08 2019