cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179125 a(n) = A000037(n)^3.

This page as a plain text file.
%I A179125 #33 Jun 06 2025 00:38:03
%S A179125 8,27,125,216,343,512,1000,1331,1728,2197,2744,3375,4913,5832,6859,
%T A179125 8000,9261,10648,12167,13824,17576,19683,21952,24389,27000,29791,
%U A179125 32768,35937,39304,42875,50653,54872,59319,64000,68921,74088,79507,85184,91125
%N A179125 a(n) = A000037(n)^3.
%C A179125 Parameters n for which the torsion subgroup of the elliptic curve y^2=x^3+n has order 2.
%C A179125 Numbers which are perfect cubes (A000578) but not perfect squares (A000290).
%H A179125 Amiram Eldar, <a href="/A179125/b179125.txt">Table of n, a(n) for n = 1..10000</a>
%H A179125 Josef Gebel, <a href="/A001014/a001014.txt">Integer points on Mordell curves</a>. [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
%H A179125 Josef Gebel, Attila Pethö and Horst G. Zimmer, <a href="https://www.raco.cat/index.php/CollectaneaMathematica/article/view/56380">Computing integral points on Mordell's elliptic curves</a>, Collectanea Mathematica, Vol. 48, No. 1-2 (1997), pp. 115-136; <a href="https://eudml.org/doc/40418">alternative link</a>.
%H A179125 <a href="/index/El#elliptic">Index to sequences related to elliptic curves</a>
%F A179125 Sum_{n>=1} 1/a(n) = zeta(3) - zeta(6) = A002117 - A013664 = 0.1847138411... - _Amiram Eldar_, Nov 21 2020
%t A179125 a[n_]:=(n + Floor[1/2 + Sqrt[n]])^3; Array[a,50] (* _Vincenzo Librandi_, Apr 11 2020 *)
%o A179125 (PARI) isok(n) = !issquare(n) && ispower(n, 3); \\ _Michel Marcus_, Nov 02 2013
%o A179125 (PARI) a(n) = (n + (1+sqrtint(4*n))\2)^3; \\ _Michel Marcus_, Nov 02 2013
%o A179125 (Magma) [(n+Floor(1/2+Sqrt(n)))^3: n in [1..60]]; // _Vincenzo Librandi_, Apr 11 2020
%o A179125 (Python)
%o A179125 from math import isqrt
%o A179125 def A179125(n): return (n+(k:=isqrt(n))+int(n>k*(k+1)))**3 # _Chai Wah Wu_, Jun 05 2025
%Y A179125 Cf. A002117, A002151, A002153, A002155, A013664, A102833, A031507.
%K A179125 nonn
%O A179125 1,1
%A A179125 _Artur Jasinski_, Jun 30 2010
%E A179125 Exponent in the definition corrected by _R. J. Mathar_, Jul 20 2010