This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179133 #23 Oct 08 2024 12:49:44 %S A179133 2,4,5,26,68,89,466,1220,1597,8362,21892,28657,150050,392836,514229, %T A179133 2692538,7049156,9227465,48315634,126491972,165580141,866988874, %U A179133 2269806340,2971215073,15557484098,40730022148,53316291173,279167724890 %N A179133 Denominators of A178381(4*n+3)/A178381(4*n+2). %C A179133 For the numerators see A128052. %H A179133 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,18,0,0,-1). %F A179133 a(n) = A179134(n)*A153727(n+1)/2. %F A179133 Lim_{n->infinity} A128052(n+1)/A179133(n) = 1+cos(Pi/5) = A296182. %F A179133 From _Colin Barker_, Jun 27 2013: (Start) %F A179133 G.f.: -(x^5+4*x^4+10*x^3-5*x^2-4*x-2)/((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). %F A179133 a(n) = 18*a(n-3)-a(n-6). (End) %F A179133 From _Greg Dresden_, Oct 16 2021: (Start) %F A179133 a(3*n) = 2*Fibonacci(6*n+1), %F A179133 a(3*n+1) = 2*Fibonacci(6*n+3), %F A179133 a(3*n+2) = Fibonacci(6*n+5). (End) %p A179133 with(GraphTheory): nmax:=120; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+3)/A178381(4*n+2)) od: seq(a(n),n=0..nmax/4-1); %t A179133 Flatten[Table[{2*Fibonacci[6 n + 1], 2*Fibonacci[6 n + 3], %t A179133 Fibonacci[6 n + 5]}, {n, 0, 10}]] (* _Greg Dresden_, Oct 16 2021 *) %t A179133 LinearRecurrence[{0,0,18,0,0,-1},{2,4,5,26,68,89},30] (* _Harvey P. Dale_, Oct 08 2024 *) %Y A179133 Cf. A000045, A128052, A153727, A178381, A179131, A179132, A179133, A179134, A296182. %K A179133 easy,frac,nonn %O A179133 0,1 %A A179133 _Johannes W. Meijer_, Jul 01 2010