cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179134 a(n) = (F(2*n-1) + F(2*n+2)) * (5/6 - cos(2*Pi*n/3)/3), where F(n) = Fibonacci(n).

Original entry on oeis.org

1, 4, 10, 13, 68, 178, 233, 1220, 3194, 4181, 21892, 57314, 75025, 392836, 1028458, 1346269, 7049156, 18454930, 24157817, 126491972, 331160282, 433494437, 2269806340, 5942430146, 7778742049, 40730022148, 106632582346
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Crossrefs

Cf. A128052, A000045 (Fibonacci numbers).
Appears in A179133.

Programs

  • Maple
    with(combinat): nmax:=28; for n from 0 to nmax do a(n):=(fibonacci(2*n-1)+fibonacci(2*n+2))*(5/6-cos(2*Pi*n/3)/3) od: seq(a(n),n=0..nmax);

Formula

a(n) = 18*a(n-3)-a(n-6). G.f.: -(2*x^5+4*x^4+5*x^3-10*x^2-4*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013