This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179156 #8 Oct 07 2012 00:15:38 %S A179156 1,1,5,64,1577,64026,3887167,330394800,37487397201,5477556616750, %T A179156 1002201757761971,224502014115239136,60447250689539460925, %U A179156 19264011725572422723292,7172619686789755991626485 %N A179156 G.f. satisfies: A(x) = B(x*A(x)) where B(x) = Sum_{n>=0} x^n/n!^2 and A(x) = Sum_{n>=0} a(n)*x^n/n!^2. %F A179156 G.f.: A(x) = (1/x)*Series_Reversion(x/B(x)) where A(x/B(x)) = B(x) = Sum_{n>=0} x^n/n!^2. %F A179156 a(n) = [x^n/n!^2] B(x)^(n+1)/(n+1). %e A179156 G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 64*x^3/3!^2 + 1577*x^4/4!^2 +... %e A179156 where A(x) = Sum_{n>=0} x^n*A(x)^n/n!^2. %e A179156 Also, A(x/B(x)) = B(x) = 1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 +... %o A179156 (PARI) {a(n)=local(B=sum(m=0,n,x^m/m!^2+O(x^(n+2))));n!^2*polcoeff(serreverse(x/B)/x,n)} %Y A179156 Cf. A217567. %K A179156 nonn %O A179156 0,3 %A A179156 _Paul D. Hanna_, Jan 04 2011