A179196 Number of primes up to the n-th Ramanujan prime: A000720(A104272(n)).
1, 5, 7, 10, 13, 15, 17, 19, 20, 25, 26, 28, 31, 35, 36, 39, 41, 42, 49, 50, 51, 52, 53, 56, 57, 60, 63, 64, 69, 70, 73, 74, 79, 80, 81, 83, 84, 85, 89, 93, 94, 96, 104, 105, 107, 108, 109, 110, 111, 116, 117, 118, 119, 120, 123, 128, 129, 131, 133, 136, 140, 142, 143
Offset: 1
Keywords
Examples
The 10th Ramanujan prime is 97, and pi(97) = 25, so a(10) = 25.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Christian Axler, On the number of primes up to the nth Ramanujan prime, arXiv:1711.04588 [math.NT], 2017.
- Christian Axler, On Ramanujan primes, Functiones et Approximatio Commentarii Mathematici (2019).
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- H. W. Shapiro, Iterates of arithmetic functions and a property of the sequence of primes, Pacific J. Math. Volume 3, Number 3 (1953), 647-655.
- J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 7(2009), 630-635.
- J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009, 2010.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
- Wikipedia, Ramanujan prime
Programs
-
Mathematica
f[n_] := With[{s = Table[{k, PrimePi[k] - PrimePi[k/2]}, {k, Prime[3 n]}]}, Table[1 + First@ Last@ Select[s, Last@ # == i - 1 &], {i, n}]]; PrimePi@ f@ 63 (* Michael De Vlieger, Nov 14 2017, after Jonathan Sondow at A104272 *)
-
Perl
use ntheory ":all"; say prime_count(nth_ramanujan_prime($)) for 1..100; # _Dana Jacobsen, Dec 25 2015
Comments