This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179200 #6 Dec 25 2015 02:20:18 %S A179200 0,1,0,-6,60,-600,5880,-38640,-624960,45077760,-1773129600, %T A179200 58531809600,-1657462435200,33703750080000,171919752076800, %U A179200 -76383384045696000,6034124486347776000,-348318907415331840000,15862493882862941184000 %N A179200 E.g.f. equals the real part of the i-th iteration of (x + x^2), where i=sqrt(-1). %C A179200 Let H(x) equal the i-th iteration of (x + x^2), then %C A179200 . the inverse of H(x) equals the conjugate of H(x); %C A179200 . H(x+x^2) = H(x) + H(x)^2; %C A179200 . H(x) = F(x) + i*G(x) where G(x) = e.g.f. of A179201 and F(x) = e.g.f. of this sequence, where H(F(x) - i*G(x)) = x; %C A179200 . coefficients of H(x) form the first column of triangular matrix A030528 raised to the i-th power, where A030528(n,k) = C(k,n-k). %F A179200 E.g.f.: F(x) satisfies: %F A179200 . F(x) = (G(x+x^2)/G(x) - 1)/2 %F A179200 . G(x) = sqrt( F(x) + F(x)^2 - F(x+x^2) ) %F A179200 where G(x) is the e.g.f. of A179201. %e A179200 E.g.f: F(x) = x - 6*x^3/3! + 60*x^4/4! - 600*x^5/5! + 5880*x^6/6! +... %e A179200 The e.g.f. of A179201, G(x), begins: %e A179200 G(x) = 2*x^2/2! - 6*x^3/3! + 12*x^4/4! + 200*x^5/5! - 6240*x^6/6! + 139440*x^7/7! - 2869440*x^8/8! +... %e A179200 The i-th iteration of (x + x^2) = H(x) = F(x) + i*G(x), begins: %e A179200 H(x) = x + i*x^2 - (1 + i)*x^3 + (5 + i)*x^4/2 - (15 - 5*i)*x^5/3 + (49 - 52*i)*x^6/6 - (23 - 83*i)*x^7/3 - (93 + 427*i)*x^8/6 + (15652 + 18537*i)*x^9/126 - (61567 + 24585*i)*x^10/126 + (369519 - 42094*i)*x^11/252 - (1743963 - 1222750*i)*x^12/504 + ... %e A179200 where H(F(x) - i*G(x)) = x. %o A179200 (PARI) {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(c,r-c))),L=sum(k=1,#M,-(M^0-M)^k/k),N=sum(k=0,#L,(I*L)^k/k!));if(n<1,0,real(n!*N[n,1]))} %Y A179200 Cf. A179201, A030528. %K A179200 sign %O A179200 0,4 %A A179200 _Paul D. Hanna_, Jul 02 2010