This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179229 #42 Oct 25 2024 09:46:23 %S A179229 0,0,0,1,0,0,1,2,1,0,0,1,1,1,0,3,1,1,1,0,0,1,0,2,2,1,2,2,0,0,1,6,0,2, %T A179229 0,1,1,2,0,2,0,1,1,0,2,1,1,2,2,3,0,2,0,3,0,2,1,1,1,1,1,2,1,10,0,1,1,2, %U A179229 0,1,1,4,1,1,1,3,1,0,1,2,4,1,0,1,1,1 %N A179229 a(n) = number of Abelian groups of order 2*n which are not isomorphic to the group of units of the ring Z/kZ for any k. %C A179229 The group of units U of the ring Z/kZ is always an abelian group. - _Miles Englezou_, Oct 22 2024 %H A179229 Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_small_groups">List of small groups</a>. %F A179229 a(n) + A197366(n) = A000688(2n). - _R. J. Mathar_, Jun 14 2019 %e A179229 a(1) = 0 because there is 1 Abelian group of order 2*1 = 2, and 3 distinct k such that the group of units U of Z/kZ has order 2; since U is always abelian, therefore every such U is isomorphic to C2. %e A179229 a(4) = 1 because there are 3 Abelian groups of order 2*4 = 8, and 5 distinct k such that the group of units U of Z/kZ has order 8. The cyclic C8 is not isomorphic to any of these U. %e A179229 a(8) = 2 because there are 5 Abelian groups of order 2*8 = 16, and 6 distinct k such that the group of units U of Z/kZ has order 16. The group C8 x C2 and the elementary abelian C2 x C2 x C2 x C2 are not isomorphic to any of these U. %o A179229 (GAP) %o A179229 B:=[]; LoadPackage("sonata"); %o A179229 for m in [1..64] do %o A179229 n := 2*m; %o A179229 S:=[];; %o A179229 for i in DivisorsInt(n)+1 do %o A179229 if IsPrime(i)=true then %o A179229 S:=Concatenation(S,[i]); %o A179229 fi; %o A179229 od; %o A179229 T:=[]; %o A179229 for k in [1..Size(S)] do %o A179229 T:=Concatenation(T,[S[k]/(S[k]-1)]); %o A179229 od; %o A179229 max := n*Product(T); %o A179229 R:=[]; %o A179229 for r in [1..Int(max)] do %o A179229 if Phi(r)=n then %o A179229 R:=Concatenation(R,[r]); %o A179229 fi; %o A179229 od; %o A179229 A:=[]; %o A179229 for t in [1..NrSmallGroups(n)] do %o A179229 if IsAbelian(SmallGroup(n,t))=true then %o A179229 A:=Concatenation(A,[SmallGroup(n,t)]); %o A179229 fi; %o A179229 od; %o A179229 U:=[]; %o A179229 for s in [1..Size(R)] do %o A179229 U:=Concatenation(U,[Units(Integers mod R[s])]); %o A179229 od; %o A179229 V:=[]; %o A179229 for v in [1..Size(A)] do %o A179229 for w in [1..Size(U)] do %o A179229 if IsIsomorphicGroup(A[v],U[w])=true then %o A179229 V:=Concatenation(V,[v]); %o A179229 break; %o A179229 fi; %o A179229 od; %o A179229 od; %o A179229 B:=Concatenation(B,[Size(A)-Size(V)]); %o A179229 od; %o A179229 Print(B); # _Miles Englezou_, Oct 22 2024 %Y A179229 Cf. A046660, A197366, A014197. %K A179229 nonn %O A179229 1,8 %A A179229 _Artur Jasinski_, Jul 03 2010 %E A179229 Edited by _Andrey Zabolotskiy_ and _Miles Englezou_, Oct 22 2024 %E A179229 Terms a(17) onwards from _Miles Englezou_, Oct 22 2024