A179238 Numerators in convergents to infinitely repeating period 3 palindromic continued fraction [1,2,1,...].
1, 2, 3, 5, 13, 18, 31, 80, 111, 191, 493, 684, 1177, 3038, 4215, 7253, 18721, 25974, 44695, 115364, 160059, 275423, 710905, 986328, 1697233, 4380794, 6078027, 10458821, 26995669, 37454490, 64450159, 166354808, 230804967, 397159775
Offset: 1
Examples
The first few convergents given [1,...2,...1,...1,...2,...1,... = .1....2....3....5...13,..18,... ... a(5) = 13 = 2*a(4) + a(3) = 2*10 + 3 since 5 == 2 mod 3 a(6) = 18 = a(5) + a(4) = 13 + 5 since 6 == 0 mod 3. ... Examples relating to the conjecture: Since A179238 has two recursive multipliers, we can extract the sequence A179237: (1, 2, 13, 80, 493, 3038,...) = convergents of A179238 such that a(n+1) = 2*a(n) + a(n-1). The convergent of this sequence = 1/(sqrt(10) - 3) = 6.16227766, ... = a, where 1/a = 0.1622776, ... the convergent to the palindromic continued fraction [6,6,6,...]. Then letting 1/a = tan(A), then tan(2A) = 1/3, rational. Similarly, taking a = 6.16227766, ... = tan(A), then tan(2A) = -1/3, rational, with a and 1/a irrational.
Links
- Gary W. Adamson, Proof of Adamson's Conjecture on Palindromic Continued Fractions, re: A179238.
- Marcia Edson, Scott Lewis and Omer Yayenie, The k-periodic Fibonacci sequence and an extended Binet's formula, INTEGERS 11 (2011) #A32.
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,1). - _R. J. Mathar_, Jul 06 2010
Crossrefs
Cf. A179237.
Formula
a(1) = 1; a(n+1) = a(n) + a(n-1) if n == (0,1) mod 3.
a(n+1) = 2*a(n) + a(n-1) if n == 2 mod 3.
a(n) = +6*a(n-3) +a(n-6). G.f.: x*(1+2*x+3*x^2-x^3+x^4)/(1-6*x^3-x^6). - R. J. Mathar, Jul 06 2010
a(3n+2) = A179237(n+1). - R. J. Mathar, Feb 14 2024
Comments