This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179244 #17 Feb 13 2021 01:09:10 %S A179244 33,46,51,53,54,67,72,74,75,80,82,83,85,86,87,101,106,108,109,114,116, %T A179244 117,119,120,121,127,129,130,132,133,134,137,138,139,141,156,161,163, %U A179244 164,169,171,172,174,175,176,182,184,185,187,188,189,192,193,194,196 %N A179244 Numbers that have 4 terms in their Zeckendorf representation. %C A179244 A007895(a(n)) = 4. - _Reinhard Zumkeller_, Mar 10 2013 %H A179244 Reinhard Zumkeller, <a href="/A179244/b179244.txt">Table of n, a(n) for n = 1..10000</a> %e A179244 33=21+8+3+1; %e A179244 46=34+8+3+1; %e A179244 51=34+13+3+1; %e A179244 53=34+13+5+1; %e A179244 54=34+13+5+2; %p A179244 with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(9)-1 to 200 do if B(i) = 4 then Q := `union`(Q, {i}) else end if end do: Q; %t A179244 zeck = DigitCount[Select[Range[2000], BitAnd[#, 2*#] == 0&], 2, 1]; %t A179244 Position[zeck, 4] // Flatten (* _Jean-François Alcover_, Jan 25 2018 *) %o A179244 (Haskell) %o A179244 a179244 n = a179244_list !! (n-1) %o A179244 a179244_list = filter ((== 4) . a007895) [1..] %o A179244 -- _Reinhard Zumkeller_, Mar 10 2013 %Y A179244 Cf. A035517, A007895, A111458, A135709, A179242 - A179253. %K A179244 nonn %O A179244 1,1 %A A179244 _Emeric Deutsch_, Jul 05 2010