This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179246 #15 Feb 13 2021 01:09:21 %S A179246 232,321,355,368,373,375,376,465,499,512,517,519,520,554,567,572,574, %T A179246 575,588,593,595,596,601,603,604,606,607,608,698,732,745,750,752,753, %U A179246 787,800,805,807,808,821,826,828,829,834,836,837,839,840,841,876,889 %N A179246 Numbers that have 6 terms in their Zeckendorf representation. %C A179246 A007895(a(n)) = 6. - _Reinhard Zumkeller_, Mar 10 2013 %H A179246 Reinhard Zumkeller, <a href="/A179246/b179246.txt">Table of n, a(n) for n = 1..10000</a> %e A179246 232 = 144 + 55 + 21 + 8 + 3 + 1; %e A179246 321 = 233 + 55 + 21 + 8 + 3 + 1; %e A179246 355 = 233 + 89 + 21 + 8 + 3 + 1; %e A179246 368 = 233 + 89 + 34 + 8 + 3 + 1; %e A179246 373 = 233 + 89 + 34 + 13 + 3 + 1. %p A179246 with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i; for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(13)-1 to 900 do if B(i) = 6 then Q := `union`(Q, {i}) else end if end do: Q; %t A179246 zeck = DigitCount[Select[Range[12000], BitAnd[#, 2*#] == 0 &], 2, 1]; %t A179246 Position[zeck, 6] // Flatten (* _Jean-François Alcover_, Jan 30 2018 *) %o A179246 (Haskell) %o A179246 a179246 n = a179246_list !! (n-1) %o A179246 a179246_list = filter ((== 6) . a007895) [1..] %o A179246 -- _Reinhard Zumkeller_, Mar 10 2013 %Y A179246 Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179247, A179248, A179249, A179250, A179251, A179252, A179253. %K A179246 nonn %O A179246 1,1 %A A179246 _Emeric Deutsch_, Jul 05 2010