This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179248 #15 Feb 13 2021 01:09:29 %S A179248 1596,2206,2439,2528,2562,2575,2580,2582,2583,3193,3426,3515,3549, %T A179248 3562,3567,3569,3570,3803,3892,3926,3939,3944,3946,3947,4036,4070, %U A179248 4083,4088,4090,4091,4125,4138,4143,4145,4146,4159,4164,4166,4167,4172,4174,4175 %N A179248 Numbers that have 8 terms in their Zeckendorf representation. %C A179248 A007895(a(n)) = 8. - _Reinhard Zumkeller_, Mar 10 2013 %H A179248 Reinhard Zumkeller, <a href="/A179248/b179248.txt">Table of n, a(n) for n = 1..10000</a> %e A179248 1596 = 987+377+144+55+21+8+3+1; %e A179248 2206 = 1597+377+144+55+21+8+3+1; %e A179248 2439 = 1597+610+144+55+21+8+3+1; %e A179248 2528 = 1597+610+233+55+21+8+3+1; %e A179248 2562 = 1597+610+233+89+21+8+3+1. %p A179248 with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(17)-1 to 5000 do if B(i) = 8 then Q := `union`(Q, {i}) else end if end do: Q; %t A179248 zeck = DigitCount[Select[Range[10^5], BitAnd[#, 2*#] == 0 &], 2, 1]; %t A179248 Position[zeck, 8] // Flatten (* _Jean-François Alcover_, Jan 30 2018 *) %o A179248 (Haskell) %o A179248 a179249 n = a179249_list !! (n-1) %o A179248 a179249_list = filter ((== 9) . a007895) [1..] %o A179248 -- _Reinhard Zumkeller_, Mar 10 2013 %Y A179248 Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179246, A179247, A179249, A179250, A179251, A179252, A179253. %K A179248 nonn %O A179248 1,1 %A A179248 _Emeric Deutsch_, Jul 05 2010