This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179249 #15 Feb 13 2021 01:09:33 %S A179249 4180,5777,6387,6620,6709,6743,6756,6761,6763,6764,8361,8971,9204, %T A179249 9293,9327,9340,9345,9347,9348,9958,10191,10280,10314,10327,10332, %U A179249 10334,10335,10568,10657,10691,10704,10709,10711,10712,10801,10835,10848 %N A179249 Numbers that have 9 terms in their Zeckendorf representation. %C A179249 A007895(a(n)) = 9. - _Reinhard Zumkeller_, Mar 10 2013 %H A179249 Reinhard Zumkeller, <a href="/A179249/b179249.txt">Table of n, a(n) for n = 1..10000</a> %e A179249 4180 = 2584 +987+377+144+55+21+8+3+1; %e A179249 5777 = 4181 +987+377+144+55+21+8+3+1; %e A179249 6387 = 4181+1597+377+144+55+21+8+3+1; %e A179249 6620 = 4181+1597+610+144+55+21+8+3+1; %e A179249 6709 = 4181+1597+610+233+55+21+8+3+1. %p A179249 with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(19)-1 to 10900 do if B(i) = 9 then Q := `union`(Q, {i}) else end if end do: Q; %t A179249 zeck = DigitCount[Select[Range[4*10^5], BitAnd[#, 2*#] == 0 &], 2, 1]; %t A179249 Position[zeck, 9] // Flatten (* _Jean-François Alcover_, Jan 30 2018 *) %o A179249 (Haskell) %o A179249 a179249 n = a179249_list !! (n-1) %o A179249 a179249_list = filter ((== 9) . a007895) [1..] %o A179249 -- _Reinhard Zumkeller_, Mar 10 2013 %Y A179249 Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179246, A179247, A179248, A179250, A179251, A179252, A179253. %K A179249 nonn %O A179249 1,1 %A A179249 _Emeric Deutsch_, Jul 05 2010