This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179251 #14 Feb 13 2021 01:09:40 %S A179251 28656,39602,43783,45380,45990,46223,46312,46346,46359,46364,46366, %T A179251 46367,57313,61494,63091,63701,63934,64023,64057,64070,64075,64077, %U A179251 64078,68259,69856,70466,70699,70788,70822,70835,70840,70842,70843 %N A179251 Numbers that have 11 terms in their Zeckendorf representation. %C A179251 A007895(a(n)) = 11. - _Reinhard Zumkeller_, Mar 10 2013 %H A179251 Reinhard Zumkeller, <a href="/A179251/b179251.txt">Table of n, a(n) for n = 1..10000</a> %e A179251 28656=17711+6765+2584+987+377+144+55+21+8+3+1; %e A179251 39602=28657+6765+2584+987+377+144+55+21+8+3+1; %p A179251 with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(23)-1 to 73000 do if B(i) = 11 then Q := `union`(Q, {i}) else end if end do: Q; %t A179251 Select[Range[6*10^6], BitAnd[#, 2*#] == 0&] // DigitCount[#, 2, 1]& // Position[#, 11]& // Flatten (* _Jean-François Alcover_, Feb 15 2018 *) %o A179251 (Haskell) %o A179251 a179251 n = a179251_list !! (n-1) %o A179251 a179251_list = filter ((== 11) . a007895) [1..] %o A179251 -- _Reinhard Zumkeller_, Mar 10 2013 %Y A179251 Cf. A035517, A007895, A179242, A179243, A179244, A179245, A179246, A179247, A179248, A179249, A179250, A179252, A179253. %K A179251 nonn %O A179251 1,1 %A A179251 _Emeric Deutsch_, Jul 05 2010