A179252 Numbers that have 12 terms in their Zeckendorf representation.
75024, 103681, 114627, 118808, 120405, 121015, 121248, 121337, 121371, 121384, 121389, 121391, 121392, 150049, 160995, 165176, 166773, 167383, 167616, 167705, 167739, 167752, 167757, 167759, 167760, 178706, 182887, 184484, 185094, 185327, 185416, 185450, 185463
Offset: 1
Keywords
Examples
75024 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368; 103681 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 75025.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(25)-1 to 180000 do if B(i) = 12 then Q := `union`(Q, {i}) else end if end do: Q;
-
Mathematica
Reap[For[m = 0; k = 1, k <= 10^8, k++, If[BitAnd[k, 2 k] == 0, m++; If[DigitCount[k, 2, 1] == 12, Print[m]; Sow[m]]]]][[2, 1]] (* Jean-François Alcover, Aug 20 2023 *)