This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179254 #52 Feb 20 2023 06:14:51 %S A179254 1,1,1,2,2,3,3,5,5,6,8,9,9,13,14,15,19,21,22,28,30,32,39,42,44,54,58, %T A179254 61,72,77,82,96,102,108,124,133,141,160,171,180,203,218,230,256,273, %U A179254 289,320,342,361,395,423,447,486,520,548,594,635,669,721,769,811,871,928,978,1044,1114 %N A179254 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are strictly increasing. %C A179254 Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3. %H A179254 Alois P. Heinz, <a href="/A179254/b179254.txt">Table of n, a(n) for n = 0..1000</a> (first 225 terms from Joerg Arndt) %e A179254 There are a(17) = 21 such partitions of 17: %e A179254 01: [ 1 2 4 10 ] %e A179254 02: [ 1 2 5 9 ] %e A179254 03: [ 1 2 14 ] %e A179254 04: [ 1 3 13 ] %e A179254 05: [ 1 4 12 ] %e A179254 06: [ 1 5 11 ] %e A179254 07: [ 1 16 ] %e A179254 08: [ 2 3 12 ] %e A179254 09: [ 2 4 11 ] %e A179254 10: [ 2 5 10 ] %e A179254 11: [ 2 15 ] %e A179254 12: [ 3 4 10 ] %e A179254 13: [ 3 5 9 ] %e A179254 14: [ 3 14 ] %e A179254 15: [ 4 5 8 ] %e A179254 16: [ 4 13 ] %e A179254 17: [ 5 12 ] %e A179254 18: [ 6 11 ] %e A179254 19: [ 7 10 ] %e A179254 20: [ 8 9 ] %e A179254 21: [ 17 ] %e A179254 - _Joerg Arndt_, Mar 31 2014 %o A179254 (Sage) %o A179254 def A179254(n): %o A179254 has_increasing_diffs = lambda x: min(differences(x,2)) >= 1 %o A179254 allowed = lambda x: len(x) < 3 or has_increasing_diffs(x) %o A179254 return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])]) %o A179254 # _D. S. McNeil_, Jan 06 2011 %o A179254 (Ruby) %o A179254 def partition(n, min, max) %o A179254 return [[]] if n == 0 %o A179254 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} %o A179254 end %o A179254 def f(n) %o A179254 return 1 if n == 0 %o A179254 cnt = 0 %o A179254 partition(n, 1, n).each{|ary| %o A179254 ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} %o A179254 cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0 %o A179254 } %o A179254 cnt %o A179254 end %o A179254 def A179254(n) %o A179254 (0..n).map{|i| f(i)} %o A179254 end %o A179254 p A179254(50) # _Seiichi Manyama_, Oct 12 2018 %Y A179254 Cf. A007294, A179255 (nondecreasing differences), A179269, A320382, A320385. %Y A179254 Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences). %K A179254 nonn %O A179254 0,4 %A A179254 _Joerg Arndt_, Jan 05 2011