cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179260 Decimal expansion of the connective constant of the honeycomb lattice.

This page as a plain text file.
%I A179260 #92 Dec 14 2024 09:17:52
%S A179260 1,8,4,7,7,5,9,0,6,5,0,2,2,5,7,3,5,1,2,2,5,6,3,6,6,3,7,8,7,9,3,5,7,6,
%T A179260 5,7,3,6,4,4,8,3,3,2,5,1,7,2,7,2,8,4,9,7,2,2,3,0,1,9,5,4,6,2,5,6,1,0,
%U A179260 7,0,0,1,5,0,0,2,2,0,4,7,1,7,4,2,9,6,7,9,8,6,9,7,0,0,6,8,9,1,9,2
%N A179260 Decimal expansion of the connective constant of the honeycomb lattice.
%C A179260 This is the case n=8 of the ratio Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)). - _Bruno Berselli_, Dec 13 2012
%C A179260 An algebraic integer of degree 4: largest root of x^4 - 4x^2 + 2. - _Charles R Greathouse IV_, Nov 05 2014
%C A179260 This number is also the length ratio of the shortest diagonal (not counting the side) of the octagon and the side. This ratio is A121601 for the longest diagonal. - _Wolfdieter Lang_, May 11 2017 [corrected Oct 28 2020]
%C A179260 From _Wolfdieter Lang_, Apr 29 2018: (Start)
%C A179260 This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 3, pp. 69-74. See also the comments in A302711 with the Romanus link and his Exemplum tertium.
%C A179260 This problem is equivalent to R(45, 2*sin(Pi/120)) = 2*sin(3*Pi/8) with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/120) see A302715. (End)
%D A179260 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.10, p. 333.
%D A179260 Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
%D A179260 Neal Madras and Gordon Slade, Self-avoiding walks, Probability and its Applications, Birkhäuser Boston, Inc. Boston, MA, 1993.
%H A179260 Hugo Duminil-Copin and Stanislav Smirnov, <a href="http://arxiv.org/abs/1007.0575">The connective constant of the honeycomb lattice equals sqrt(2+sqrt2)</a>, arXiv:1007.0575 [math-ph], 2011.
%H A179260 Hugo Duminil-Copin and Stanislav Smirnov, <a href="http://dx.doi.org/10.4007/annals.2012.175.3.14">The connective constant of the honeycomb lattice equals sqrt(2+sqrt2)</a>, Ann. Math. 175 (2012), pp. 1653-1665.
%H A179260 Steven Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, Jun 23 2012, Section 5.10; arXiv:2001.00578 [math.HO], 2020.
%H A179260 Pierre-Louis Giscard, <a href="http://images-archive.math.cnrs.fr/Que-sait-on-compter-sur-un-graphe-Partie-3.html">Que sait-on compter sur un graphe. Partie 3</a> (in French), Images des Mathématiques, CNRS, 2020.
%H A179260 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, <a href="http://arxiv.org/abs/math/0204277">On the scaling limit of planar self-avoiding walk</a>, Fractal Geometry and applications: a jubilee of Benoit Mandelbrot, Part 2, 339-364. Proc.
%H A179260 Bernard Nienhuis, <a href="http://dx.doi.org/10.1103/PhysRevLett.49.1062">Exact critical point and critical exponents of O(n) models in two dimensions</a>, Phys. Rev. Lett. 49 (1982), 1062-1065.
%H A179260 Jonathan Sondow and Huang Yi, <a href="http://arxiv.org/abs/1005.2712">New Wallis- and Catalan-type infinite products for Pi, e, and sqrt(2+sqrt(2))</a>, arXiv:1005.2712 [math.NT], 2010.
%H A179260 Jonathan Sondow and Huang Yi, <a href="http://www.jstor.org/stable/10.4169/000298910x523399">New Wallis- and Catalan-type infinite products for Pi, e, and sqrt(2+sqrt(2))</a>, Amer. Math. Monthly 117 (2010) 912-917.
%H A179260 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%H A179260 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.
%F A179260 sqrt(2+sqrt(2)) = (2/1)(6/7)(10/9)(14/15)(18/17)(22/23)... (see Sondow-Yi 2010).
%F A179260 Equals 1/A154739. - _R. J. Mathar_, Jul 11 2010
%F A179260 Equals 2*A144981. - _Paul Muljadi_, Aug 23 2010
%F A179260 log (A001668(n)) ~ n log k where k = sqrt(2+sqrt(2)). - _Charles R Greathouse IV_, Nov 08 2013
%F A179260 2*cos(Pi/8) = sqrt(2+sqrt(2)). See a remark on the smallest diagonal in the octagon above. - _Wolfdieter Lang_, May 11 2017
%F A179260 Equals also 2*sin(3*Pi/8). See the comment on van Roomen's third problem above. - _Wolfdieter Lang_, Apr 29 2018
%F A179260 Equals i^(1/4) + i^(-1/4). - _Gary W. Adamson_, Jul 06 2022
%F A179260 Equals Product_{k>=0} ((8*k + 2)*(8*k + 6))/((8*k + 1)*(8*k + 7)). - _Antonio Graciá Llorente_, Feb 24 2024
%F A179260 Equals Product_{k>=1} (1 - (-1)^k/A047522(k)). - _Amiram Eldar_, Nov 22 2024
%e A179260 1.84775906502257351225636637879357657364483325172728497223019546256107001500...
%t A179260 RealDigits[Sqrt[2+Sqrt[2]],10,120][[1]] (* _Harvey P. Dale_, Jan 19 2014 *)
%o A179260 (PARI) sqrt(2+sqrt(2)) \\ _Charles R Greathouse IV_, Nov 05 2014
%Y A179260 Cf. A002193, A047522, A101464, A127672, A144981, A154739, A302715, A121601.
%K A179260 cons,nonn
%O A179260 1,2
%A A179260 _Jonathan Vos Post_, Jul 06 2010