This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179269 #56 Feb 27 2020 16:44:36 %S A179269 1,1,1,1,2,2,2,3,3,3,5,5,5,7,7,7,10,10,10,13,14,14,18,19,19,23,25,25, %T A179269 30,32,33,38,41,42,48,52,54,60,65,67,75,81,84,92,99,103,113,121,126, %U A179269 136,147,153,165,177,184,197,213,221,236,253,264,280,301,313,331,355,371,390,418,435,458 %N A179269 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are increasing, and first difference > first part. %C A179269 Conditions as in A179254; additionally, if more than 1 part, first difference > first part. %C A179269 Equivalently, number of partitions for which the sequence of part counts by decreasing part size is 1, 2, 3, ... - _Olivier Gérard_, Jul 28 2017 %H A179269 Andrew Howroyd, <a href="/A179269/b179269.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..200 from Seiichi Manyama) %H A179269 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %F A179269 G.f.: Sum_{k>=0} x^(k*(k+1)*(k+2)/6) / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - _Ilya Gutkovskiy_, Apr 25 2019 %e A179269 a(10) = 5 as there are 5 such partitions of 10: 1 + 3 + 6 = 1 + 9 = 2 + 8 = 3 + 7 = 10. %e A179269 a(10) = 5 as there are 5 such partitions of 10: 10, 8 + 1 + 1, 6 + 2 + 2, 4 + 3 + 3, 3 + 2 + 2 + 1 + 1 + 1 (second definition). %e A179269 From _Gus Wiseman_, May 04 2019: (Start) %e A179269 The a(3) = 1 through a(13) = 7 partitions whose differences are strictly increasing (with the last part taken to be 0) are the following (A = 10, B = 11, C = 12, D = 13). The Heinz numbers of these partitions are given by A325460. %e A179269 (3) (4) (5) (6) (7) (8) (9) (A) (B) (C) (D) %e A179269 (31) (41) (51) (52) (62) (72) (73) (83) (93) (94) %e A179269 (61) (71) (81) (82) (92) (A2) (A3) %e A179269 (91) (A1) (B1) (B2) %e A179269 (631) (731) (831) (C1) %e A179269 (841) %e A179269 (931) %e A179269 The a(3) = 1 through a(11) = 5 partitions whose multiplicities form an initial interval of positive integers are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A307895. %e A179269 (3) (4) (5) (6) (7) (8) (9) (A) (B) %e A179269 (211) (311) (411) (322) (422) (522) (433) (533) %e A179269 (511) (611) (711) (622) (722) %e A179269 (811) (911) %e A179269 (322111) (422111) %e A179269 (End) %t A179269 Table[Length@ %t A179269 Select[IntegerPartitions[n], %t A179269 And @@ Equal[Range[Length[Split[#]]], Length /@ Split[#]] &], {n, %t A179269 0, 40}] (* _Olivier Gérard_, Jul 28 2017 *) %t A179269 Table[Length[Select[IntegerPartitions[n],Less@@Differences[Append[#,0]]&]],{n,0,30}] (* _Gus Wiseman_, May 04 2019 *) %o A179269 (Sage) %o A179269 def A179269(n): %o A179269 has_increasing_diffs = lambda x: min(differences(x,2)) >= 1 %o A179269 special = lambda x: (x[1]-x[0]) > x[0] %o A179269 allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_increasing_diffs(x)) %o A179269 return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])]) %o A179269 # _D. S. McNeil_, Jan 06 2011 %o A179269 (Ruby) %o A179269 def partition(n, min, max) %o A179269 return [[]] if n == 0 %o A179269 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} %o A179269 end %o A179269 def f(n) %o A179269 return 1 if n == 0 %o A179269 cnt = 0 %o A179269 partition(n, 1, n).each{|ary| %o A179269 ary << 0 %o A179269 ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]} %o A179269 cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0 %o A179269 } %o A179269 cnt %o A179269 end %o A179269 def A179269(n) %o A179269 (0..n).map{|i| f(i)} %o A179269 end %o A179269 p A179269(50) # _Seiichi Manyama_, Oct 12 2018 %o A179269 (PARI) %o A179269 R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, L[w-1][i-k*t]))); Mat(L)} %o A179269 seq(n)={my(M=R(n)); concat([1], vector(n, i, vecsum(M[i,])))} \\ _Andrew Howroyd_, Aug 27 2019 %Y A179269 Cf. A179254 (condition only on differences), A007294 (nondecreasing instead of strictly increasing), A179255, A320382, A320385, A320387, A320388. %Y A179269 Cf. A007862, A240027, A307895, A320509, A320510, A325324, A325357, A325391, A325460. %K A179269 nonn %O A179269 0,5 %A A179269 _Joerg Arndt_, Jan 05 2011