This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179275 #10 Oct 01 2022 14:06:52 %S A179275 2,6,9,3,5,4,7,3,7,4,1,7,7,1,9,6,7,2,1,2,3,8,1,6,0,4,7,5,0,9,2,3,2,8, %T A179275 6,6,7,0,8,8,6,7,0,8,0,7,3,0,8,0,1,5,8,9,2,3,9,9,2,0,6,6,4,5,4,9,5,1, %U A179275 9,1,6,0,7,3,0,5,1,8,2,0,1,2,8,0,3,3,1,3,2,6,0,1,2,3,1,0,3,8,4,6,1,5,4,5,8 %N A179275 Decimal expansion of 2*sqrt(Pi)/3^(1/4). %C A179275 Also the side length of an equilateral triangle with area Pi (A000796), the area of a unit circle. %C A179275 The area of an equilateral triangle with side length s is (sqrt(3)/4)s^2 = A120011*s^2, so A120011*(this constant)^2 = A000796. %H A179275 G. C. Greubel, <a href="/A179275/b179275.txt">Table of n, a(n) for n = 1..10000</a> %H A179275 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A179275 2*sqrt(Pi)/3^(1/4) = 2*A002161/A011002. %e A179275 2.693547374177196721238160475092328667088670807308015892399206645495191607305... %t A179275 RealDigits[2*Sqrt[Pi]/3^(1/4), 10, 100][[1]] (* _G. C. Greubel_, Mar 24 2017 *) %o A179275 (PARI) 2*sqrt(Pi)/3^(1/4) %Y A179275 Cf. A002161 (sqrt(Pi)), A011002 (3^1/4), A000796 (Pi), A002194 (sqrt(3)), A120011 (sqrt(3)/4). %K A179275 cons,nonn %O A179275 1,1 %A A179275 _Rick L. Shepherd_, Jul 07 2010