This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179277 #17 Nov 27 2024 10:53:32 %S A179277 1,1,3,6,19,50,158,492,1635,5466,18794,65332,230414,820052,2945436, %T A179277 10654808,38795523,142045610,522694866,1931912036,7169014298, %U A179277 26698782108,99756713732,373839656616,1404795235438,5292114330180,19982497509316,75613566762440,286689890422780 %N A179277 A(x) = C(x) * C(x^2) * C(x^4) * C(x^8) *...; C = Catalan, A000108. %C A179277 Let the sequence = A(x) = (1 + x + 3x^2 + 6x^3 + 19x^4 + ...). %C A179277 Then A(x)/A(x^2) = C(x) = (1 + x + 2x^2 + 5x^3 + 14x^4 + ...). %F A179277 Let M = an infinite lower triangular matrix with A000108 in each column but shifted down twice from the previous column, for k>0. Lim_{n->inf.} M^n = A179277, the left shifted vector considered as a sequence: (1 + x + 3x^2 + ...) %F A179277 a(n) = Sum_{l=0..n/2} a(l)*A000108(n-2*l). - _R. J. Mathar_, Jul 09 2010 %F A179277 a(n) ~ c * 4^n / n^(3/2), where c = 0.60708656891919662230305917688276343401320432830016456... - _Vaclav Kotesovec_, Nov 27 2024 %e A179277 The generating triangle = M: %e A179277 1; %e A179277 1; %e A179277 2, 1; %e A179277 5, 1; %e A179277 14, 2, 1; %e A179277 42, 5, 1; %e A179277 132, 14, 2, 1; %e A179277 429, 42, 5, 1; %e A179277 1430, 132, 14, 2, 1; %e A179277 4862, 429, 42, 5, 1; %e A179277 16796, 1430, 132, 14, 2, 1; %e A179277 ... %e A179277 Then take powers of this matrix, obtaining a left-shifted vector considered as a sequence = A179277. %p A179277 A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc: %p A179277 A179277 := proc(n) if n <= 1 then 1; else add( procname(l)*A000108(n-2*l),l=0..n/2) ; end if; end proc: %p A179277 seq(A179277(n),n=0..80) ; # _R. J. Mathar_, Jul 09 2010 %t A179277 a[0] = 1; a[n_] := a[n] = Sum[a[k]*CatalanNumber[n - 2*k], {k, 0, n/2}]; Table[a[n], {n, 0, 30}] (* _Vaclav Kotesovec_, Nov 27 2024 *) %Y A179277 Cf. A000108, A088218. %K A179277 nonn %O A179277 0,3 %A A179277 _Gary W. Adamson_, Jul 07 2010 %E A179277 More terms from _R. J. Mathar_, Jul 09 2010