This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179285 #8 Dec 17 2019 05:34:31 %S A179285 1,1,1,2,1,1,2,1,1,1,3,2,0,1,1,4,2,2,0,1,1,4,2,2,1,0,1,1,4,2,0,2,1,0, %T A179285 1,1,4,2,2,1,1,1,0,1,1,5,3,2,0,1,1,1,0,1,1,6,3,1,1,1,0,1,1,0,1,1,6,3, %U A179285 3,3,0,1,0,1,1,0,1,1,6,3,2,2,2,1,0,0,1,1,0,1,1,6,3,1,0,2,1,1,0,0,1,1,0,1,1 %N A179285 Triangle T(n,k) read by rows, defined by: T(1,1)=1; n > 1 and k=1: T(n,1) = T(n-1,2) + T(n,2); k=2: T(n,2) = A000196(n-1); k > 2: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)). %C A179285 The second column, sequence A000196, is the initial condition for the recurrence in this triangle. See A051731, formula entered on Feb 16 2010 for the more pure form of this recurrence. %F A179285 T(1,1)=1; n > 1 and k=1: T(n,1) = T(n-1,2) + T(n,2); k=2: T(n,2) = A000196(n-1); k > 2: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)). %e A179285 Triangle begins: %e A179285 1; %e A179285 1, 1; %e A179285 2, 1, 1; %e A179285 2, 1, 1, 1; %e A179285 3, 2, 0, 1, 1; %e A179285 4, 2, 2, 0, 1, 1; %e A179285 4, 2, 2, 1, 0, 1, 1; %e A179285 4, 2, 0, 2, 1, 0, 1, 1; %e A179285 4, 2, 2, 1, 1, 1, 0, 1, 1; %e A179285 5, 3, 2, 0, 1, 1, 1, 0, 1, 1; %e A179285 6, 3, 1, 1, 1, 0, 1, 1, 0, 1, 1; %o A179285 (Excel) Using European dot comma style: %o A179285 =if(and(row()=1;column()=1);1;if(row()>=column();if(column()=1;indirect(address(row()-1;column()+1))+indirect(address(row();column()+1));if(column()=2;floor(((row()-1)^0,5);1);if(row()>=column();sum(indirect(address(row()-column()+1;column()-1;4)&":"&address(row()-1;column()-1;4);4))-sum(indirect(address(row()-column()+1;column();4)&":"&address(row()-1;column();4);4));0)));0)) %Y A179285 Cf. A179286, A179287, A059571, A051731. %K A179285 nonn,tabl %O A179285 1,4 %A A179285 _Mats Granvik_, Jul 09 2010