This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A179287 #3 Mar 30 2012 18:53:10 %S A179287 1,0,1,-1,0,1,-1,0,0,1,-2,-2,1,0,1,-1,0,-2,1,0,1,-2,-2,0,-1,1,0,1,-2, %T A179287 0,-1,0,-1,1,0,1,-2,-2,1,-2,1,-1,1,0,1,-1,1,-3,2,-2,1,-1,1,0,1,-2,-2, %U A179287 -1,-1,1,-1,1,-1,1,0,1,-2,-1,-1,-1,-1,1,-1,1,-1,1,0,1,-3,-2,2,-4,1,-2,2,-1 %N A179287 Matrix inverse of A179286. %C A179287 We can replace the second column in A179285 (first column of A179286) with (A_eps)*n^(1/2+eps) where n=0,1,2,3... and still get the Mertens function in the first column of this array. This proves nothing though because the second column in A179285 can be any sequence (beginning with a zero) of real random numbers. %e A179287 Triangle begins: %e A179287 1, %e A179287 0,1, %e A179287 -1,0,1, %e A179287 -1,0,0,1, %e A179287 -2,-2,1,0,1, %e A179287 -1,0,-2,1,0,1, %e A179287 -2,-2,0,-1,1,0,1, %e A179287 -2,0,-1,0,-1,1,0,1, %e A179287 -2,-2,1,-2,1,-1,1,0,1, %e A179287 -1,1,-3,2,-2,1,-1,1,0,1, %e A179287 -2,-2,-1,-1,1,-1,1,-1,1,0,1, %e A179287 -2,-1,-1,-1,-1,1,-1,1,-1,1,0,1, %Y A179287 Cf. A179285, A179286, A002321 (first column of this triangle). %K A179287 sign,tabl %O A179287 1,11 %A A179287 _Mats Granvik_, Jul 09 2010, Jul 17 2010